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EVALUAT{ON

The objective of the study was to develop a method of determining the
detection performunce of ground-based radars against airbornme targets under

a wide varlety of environment and system conditions.

This effort involved the development of a novel computationally efficient
method for simulating ground-based coherent radar system performance

subjected to target and clutter signals which are partially correlated.

The shovtcoming ol convent fonal shanlation technlgues ased to compute
detection performamce is that an extremely large number of statistical
replications are required to establish false alarm performance. This work
advanced the art by adapting the technique of importance sampling which
significantly reduces the required computer time, even when simulating
nonlinear systems. In most cases it is possible to simulate false alarm
probabilities as low as 10—8 with only about 103 to 104 replications. A
report, eatitled "lmportance Sampling Applied to Radar False-Alarms,"
summarizing resnlts and application examples has been accepted for

pubtication in the 1EFE Transactions of the AES.
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1. INTRODUCTION AND SUMMARY

The objective of the study described in this report was to develop a method
of determining detection performance for a ground-based radar against an air-
borne target under a wide variety of environment and system conditions. This
objective was met by constructing a digital simulation of the radar signals as
they are transmitted, reflected from the scatterers representing targets and
clutter, and received by and processed in the radar receiver. Realistic ground,
rain, and chaff clutter environments are modeled, as well as the processing fea-
tures of modern radars such as moving target indication (MIl), both coherent and
noncoherent integration, constant false alarm rate (CFAR) processing, and non-
linear operations. The detection performance is determined by Monte Carlo
sampling techniques, in which the target and clutter scattering models are
described statistically, as well as the location of the target with respect to
the center of the antenna beam, range gate, and Doppler filter.

The shortcoming of conventional sampling techniques applied to detection
performance in radar is the extremely large number of statistical replications
required to establish false alarm performance. In order to overcome this prob-
lem a considerable ceffort was cxpended in developing importance sampling tech-
niques that could be applied to the wide variety of signals in radar, including
the non-Gaussian and non-Rayleigh signals characteristic of clutter. The results
of this effort are described in Section 2. In most cases it is possible to simu-
late false alarm rates as low as 10'.8 with only about 103 to 104 replications of
the expceriment. Techniques for handling mixed statistics as well as CFAR are also
described.

It is well known that antenna motion during the coherent processing time of
the radar causes the clutter to be amplitude modulated; the effect is a broadening
of the clutter spectrum that would be obscrved if there were no antenna motion,
It is straightforward to compute the resultant spectrum if the clutter is spa-
tially homogeneous, especially If the antenna pattern and original clutter spec-
trum are Gaussian shaped. In Scection 3 we cxtend the analysis to nonhomogeneous
clutter and arbitrary beamshapes. While the signals are nonstationary, the re-
sulting algorithms arc in o form that is amenable to efficient digital simulation.
In Scction 4 a peneral procedure is derived for generating correlated random

signal scequences that are characteristic of clutter in a ground-based radar. The




procedure is extremely efficient as it Ls based on fast Fourler transform (FFT)
combined with interpolation. 1t can be applied to any number of signal samples
and the shape of the power spectral density is arbitrary.

The simulation program that was developed to determine detection performance
is described in Section 5, and a Fortran listing is given in Appendix A.
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2. IMPORTANCE SAMPLING

Importance sampling is a technique that can be applied to the simulation
of low-probublility events without incurring the computation costs usually as-
socfated with such simulations. With importance sampling one can modify the
probability distribution of the underlying random process in order to make
the low-probability events (false alarms) occur more frequently. The desired
probabilities at the vutput of the process are then found by weighting each
event by a factor that is a function of only the state of the input; this fac-
tor is independent of the process itself [1-6].

The basic principle of importance sampling is straightforward as described
above. However, it is not so well known just how the technique can be made to
work in a particular application. For example, what if there are multiple ran-
dom inputs to some processor where the inputs might belong to different statis-
tical processes? Or if the processor {s nonlinear? Or i1f there is not a unique
relationship between the input and output of the processor? These and other is-
sues will be addressed in this report, We will concentrate on applications to
the simulation of signals In radar and communication systems in order to limit

the scope of the study. We begin with a tutorial discussion of both conventional

and importance sampling.

2,1 _CONVENTLONAL_ SAMPLING THEORY

Let us designate the output of a statistical process as y. We wish to
estimate the probability density function of this process, p(y), or its cumu-
1ative distribution function, P(y), with a finite set of observations. The
conventlonal procedure is to sort the output samples into preselected bins
that cover the range of interest in the variable y. This operation of sorting
resnlts in a histogram, which can be integrated to form the sample distribu-
tion function.

For the purpose of examining the upper tail of the distribution function

it is more convenicnt to work with the complement to P(y), namely

o«

Qly) =1 - r(y) =/ p(g) 4t . (§9)
y




In estimating Q(y) with a finite set of observations, we can define the oper-

ation applied to cach sample as

D (y) =1 .oy 2y

=0 » y<yY » (2)
where Y is a preset threshold. 1n practice, this operation will be applied
to many values of Y simultaneously, for cach sample of y, in the prior step
of computing the histogram. We note that all samples receive the same weight.
The result of applying the operation in (2) to each sample of y is also f

a statistical process. The mean value of (2) is

D, (v) fDY(y)p(y) dy

3

] p(y) dy = Q(Y) s 3)
Y

fl

and the second moment §s

Dy (y) [D§(y)p(y) dy

w0

[ p(y) dy = Q) . (s)
Y

L}

The variance is given by

var[UY(y)] = Dz(y) - 16;1;7]2

QM - () = QP . )




in the following analysis we will be interested in the upper tail of the dis-

tribution where P(Y) = 1, so we can essentially assume that

var [DY(y)l= Q(Y) . (6)

In order to estimate Q(Y) the operation in (2) will be repeated for N samples

of y and the estimate will Le formed as
A 1 E.
Q) =% 2, Dy , %))
i=1

where (yi) is the set of N observations (statistical samples), which we assume

to be independent. It follows from (3) and (7) that 6(Y) = Q(Y), which means

that (7) is an unbiased cstimate. The variance of (7) is given by

var [G(Y)] = ; Q(Y)P(Y)

= ; Q(y) . 8)

Tn order to estimate Q(Y) with high precision, the standard deviation of the
estimate must be small compared with the mean value. 1n other words, NQ(Y)>>1.
1f, for example, Q(V) = 10—6 then N must be at least as large as 106 in order
to achieve any precision at all in the estimate. This requirement for an im-
practically large number of samples is the dilemma faced when one applies con-
ventional sampling techniques to the estimate of low—pfobability events.
Importance sampling will be a solution to this dilemma, but before we
jump to that subject let us expand our discussion to include a description of
the process itself. As sketched in Figure 1, the input to sume processor will
be a random variable x with a known probability density function p(x). The
output s y, for which we wish to estimate Q(y), the complement to the distri-
bution function, with a finite set of observations. The estimate will be
formed by taking the average volue of the observable z, which is the operation

DY(y) applied to y. The transfer function of the processor will be designated

hy y F(x), whirh implies that o piven volue of x is mapped into a unique value

of y. Since vach x results inoa particulas value of 2 we can write




Threshold, Y

I~
input, x Processor output, y Sorting _ol:’se}'\faiﬂ_g_,»:
- . N Operation -
p(x) F(x) ply) p. (y)
y 'Y
3 et e e =

Fipgure 1. Sketeh of Operatlons Perfoimed with
Conventional Sampling




s g e ) S A D i < e

2 = DYlF(x)l . (¢)]

2.2 1MPORTANCE SAMPLING THEORY

The principle of importance sampling is to distort or modify the input ran-
dom process {x} in order to make the original low-probability events occur more
frequently. This action will be compensated by weighting the event by a factor
that is a function of only the particular value of x on input [1,2,3). The
functional flow 18 sketched in Figure 2 where

2y~ DYIF(x)lv(x) (10)

The weight {s designiated as w(x) and the modified probability density function
on input is designated as ﬁm(x). In order for z, to be an unbiased estimate
of Q(Y) we must have im =7, the latter quantity being the mean value of (9),

so that

/DYIF(X)]V(X)Pm(X)dX = [DYIF(X)]P(X)dx - 11)

thus N

L]

w(x) = PO)/P (x) . a2)
For each replication of the experiment a specific value of x will be generated.
With the use of (12) we can then compute the weight on the basis of the ratio
of known input probability density functions.

So far we have been working with a one-dimensional process. Actually
the process could be multi-dimensfonal. We will assume that there is still a

single output, y, so that we can write

CDRGry, %)) 13)

and

= DY[F(xl, ceey xK)]v(x], ooy X)L (14)
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And since T T T we have

V(X], ceey XK) = i—):n—(}—]-.—.—.T'————x ) (15)

where the right side of (15) is the ratio of two joint probability density

functions. If the input samples are independent and belong to the same dis-
tribution function,

K
(%, ooy X)) = P(x, )/P_(x ) . (16)
wixy K le X Py

2.3 SPECIFIC EXAMPLES

In order to demenstrate the utility and power of importance sampling,

several examples will be given. First, we will examine linear processors

where the output statistics are known, and then we will analyze some non-

lincar processors.
Exzample 1: Exponential Distribution

Let x be exponentially distributed with y = F(x) = x. We can define

v
(=]

px) = (/e . X
=0 , x<0 R (17)

where x is the mean value of the original distribution. Upon integration

we obtain
Qlx) = &7X/* (18)

for x > 0.

For importance sampling we will modify the input distribution by

changing (increasing) the mean value as




10

= 0 , X<0 . 19)

The weight is now given by

x - .-
w(x) = '13?'8‘) - ;x_."! i e ’ 0
m

which is a simple calculation that will be performed for each sample on input.
For the case when y = F(x) = x as we have here, the second moment of z

can be evaluated easily.  For a single observation

22 . [oﬁ(x)uz(x)vm(x) dx

w

= ] wix) p(x) dx . (21)
Y

For the cxponeat lal distribution we ¢an substitute (17) and (20) to obtain

X

52 = nLTj:“ e—(2/x - llxm)Y (22)
x(2 ~ x/xm) .
Since 7 = Q(Y) = 0~Y/x‘ the variance for a single observation is given by
%y Y/% -2¥/%
var{s | = - o e Tm -1 e (23)
m e
x(2 - x/xm)

For & independent observations in estimating the distribution function, the
vitt Lance will be reduced by a factor of N over that of a single observation,

Thut we con wiite the following ratio for N independeat observations:




When we work with the expression in (24) it 1s convenient to simplify
it slightly by anticipating the result ;; >> x. Thus

x Y/xm

_-.___"L. 1w -1 . . (25)
(7 )2 N zx .0
‘I'II ’ '

Now we can ask the question as to what the optimum value of x_ is. If we dif-
ferentiate (25) with respect to ;; and sct the result equal to zero we obtain

x = Y as the solution. At the optimum,
m

e leY
Rl LR . (26)

For illustration, supposc we are interested in

hood of Q(Y) = 107, With (18) we obtain 'x'm = Y = 13.8x (which means that the

approximation made in obtaining (25) was indeed valid) and (26) reduces to

estimacing Q(Y) in the neighbor-

var[z ]
© o= 1.8/ . 27)
)

In Section 2 with convent fonal sampling techniques this ratio was 106/N. We

have thus reduced the number ol samples required to obtain a specified preci-

sion by a {actor of over 50,0000 With N - 1000 samples the relative standard

deviation in the estimate of Q(Y) will be 13.3% with importance sampling, an

acceptable crror for practically any application.

In Figure 3 we compare the experimental distribution function with N = 1000
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and the exact distribution (unction.* The value of ;; = 13.8x was used to
first compute the histogram, which was then integrated to obtain the sample
distribution function. While the procedure was optimized for Z(Y) = 10-6,
we observe that relatively small errors exist throughout the range in proba-
bility that covers five ordcrs of magnitude. Thus the procedure is relatively
insensitive to the precise value of ;; (which could also be established by
examining (25)).

Example 2: Gaussian Distrilution

Let x be a zero-mean Gaussian random variable, again with y = F(x) = x,

where

2 2 .
P(x) = -- 3 X /207 (28)
/210
and
Q(Y) -f p(x) dx . (29)
Y

For importance sampling we will modify p(x) by changing (increasing) 0 so that

2 2
Pm(x) 2oL e 120,

— (30)
/2n o
m
The weight is given by
_r % -/e? - 1/0d)x?/2
w(x) = pm(x) =5 e m 1)

*

The inputs to the process were exponentially distributed random variables.
1f u is a uniformly distributed random variable (0,1), then x = -1n(u) generates
an exponential random vacjable with unit mean. With importance sampling the

precise statistical properties of the pscudo-random numbers, u, are no longer
critical as they would be with conventional sampling techniques.
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From (21) we obtain for a single observation ;

. o /o R
22 - ———"‘——q(v/z - 02/0:) , (32)

2,2 \ 9
z-o/cm

where Q(Y) is given by (29). The relative variance for N independent cbser-

vation 1s given by .

- ! i

Vf"lzmj 1| o, /o ?(YA - 1.1‘/03.)_l |
7 TN — 5 2 :
G AR ofe2 T

. (33)

1 1n anticipation of the result 0 >» 0 we might be tempted to simplify (33)
__z m
by setting v2 - o lom = ¥2; however, the resultling approximation would not

yield an optimum solution as a function of om. As it stands, (33) is best

i handled numerically.

We can fimd an opt imam value of Um that minimizes (33) for a specific

1 value of Y. Vor example, If Y = 4.70, Q(Y) = 10°%. A value of o, = 4 .80

was found to be the optimum for this value of Y, although (33) was nearly flat
over the interval 4.0 < om/O < 5.5 so that we can conclude that om =Y is

essentially the optimum.  For om =Y = 4,70, the relative variance 1is

; vurlum]

S 2 = 49/N s (34)

@) 1
which wmeans that N 1000 observations would result in a relative standard
deviation of 22% in the estimate of Q(Y). 1In Figure 4 we show the comparison ’

between the cxperimental (N = 1000 and o, = 4,70) and exact distribution func-
tions for the Caussiau ase. While Om was chosen to optimize the procedure
for Q(Y) ~ 10‘6, we note that the crror is.relatively small over most of the

range in probability plotted In the figure., We sce also that the error is

somewhat barger than ia Figure 3 for the cxponential distribution, as we could

predict from (273 and (34).
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Practically every situation of interest in the analysis of radar and com-
munication systems can be handled by either the exponential or Gaussian random
variable as the input to a process (no counter examples are known to the
author) . For example, the log-normal distribution is a simple transformation
of the Gaussian, and the Weibull of an exponcntial. 1In fact, one can create
an exponential random variable from the Caussian and vice versa as we will show

in the next two examples.

Example 3: _Swn-Square of Two Gaussian Variates
Let xy and x2 be two independent, zero-mean Gaussian random variables at

the input to our processor, and let

2
y = Flx,x,) = x; + xg ) (35)

1 we select 02 = 0.% then y will be an exponential random variable with
y = 3. With importance sampling the weight applied to cach outcome will be
a function of only * and Xy From (16), (28), and (30) we can write

2,2, 2 i
wix) x,) = 2°:: (U= 20 ) (] 4 x3) R (36)

amd with (39)

2
wix,,x,) = 202 e_(l - I/ZOm)y . (37)
172 m

We have applied the above procedure for generating the exponential ran-
dom variable and with importance sampling we have computed the experimental
distributlon function. We chose Om = 2.63 (or 20i = 13.8) and N = 1000. The
cxpetimental result is esseatially fdentical to that in Figure '3, at least in
the statistical temse,
bvaqple 4: Goneration of Gaussian Variate from Fxpenential

Let x be an exponential random variable at the input to our processor.

Within the processor we will create

y = F(x) = vV2x cos 0 (38)

T e e e e e e ———
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where 0 is a uniformly distributed random variable (0.2n).* The random

va: lable y will be Gaussian distributed, and if X = 1 the mean value of y
will be zero and the variance unity. With importance sampling the weight
applied to cach outcome will be a function of only x in this example, since
the generation of 8 is performed within the processor and will not be con-

sidered as an input variable. The weight is given by (20) for x =1,

We have generated Gaussian random samples by means of (38) and have used
importance sampling to estimate the distribution function in the range of
10'“ < QY) < 10_9. The result is statistically consistent with that of the

direct method in Figure 4. A value of ;m= 22.1 (= b.72) corresponds to op-
6

timizing the procedure at Q(Y) = 1077,
With this example we no longer have a unique mapping of x into y, which

ought to sugpest other possibilities in simulation. 1In addition, we can con-

figure the processors so that all inputs are either exponential or Gaussian

random variables as we will show in Example 9.
Example 5:  Sum of Fzpomential Variates
The sum of K independent random variables that are exponentially distri-

buted is a chi-square random variable with 2K degrees of freedom. We can write

Y G, ) = D X, (39)

where lxk) is the sct of K exponential random variables on input. With im-
portance sampling the weight will be a function of the specific values of x, .

Froq\(lﬁ). (17), and (19) we can write

K
CCTRRPE XK) = (x-m/x‘)K exp [-(1/x - (/fm) Z x,
k=1

« 0K A% - M)y 40

*
The use of (38) with sin 8 substituted for cos 0 will produce a
second, independent Gaussian random variable.
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In Figure 5 we show the experimental distribution obtained by using im-
portance sampling on (39) for K = 5 and N = 1000 replications. The mean value
of the input distribution was modified as ;ﬁ = 4.7x, which optimized the pro-
cedurelat QYY) = 10—6. Note that the error is extremely small throughout the

five orders of magnitude in probability shown in Figure 5.

Ezample 6: Sum of Fxponential Variates with Arbitrary Weightc

For the previous example all input random variables were uniformly
weighted in (39). Let us generalize the situation by assuming arbitrary

weights in the summation as
y = Flxp, ..., xK) = :S ax, . (41)

where {xk) is the set of independent exponential random variables on input
with a mean volue x.  With importance sampling the weight is a function of
only the fnput, so the weight rewaing the same as (40). The distribution

function of y is piven by

; .lK-] —_
ay B
aly) - R L “2)
l] (a, - a.)
— k i
k=1
itk
in Figure 6 we have used importance sampling to estimate Q(Y) for K=2
and K = 1000. The ratio of welghts used in (41) varied from .48/.52 (resulting
in crsentially a chi-square distribution with 4 degrees of freedom) to .05/.95,
with the sum of weights being wnity in all cases. For cach of the cases, the
provedure was optimized in the neighborhood of Q(Y) ~ ]0‘6 (e.g., x_ = 10.7x
m
for the .2%/.75 case).
With thiv example we can create the following interesting situation: 1let
K2 so thar phe weight used in importance sampling in (40) will be based on
two faput var ables; however, let one of the weights a, in (41) be zero so
thar the onpat y will be exponeat fally distributed.  From one replication to

the other we can even interclaage the ay without affecting the distribution

funition of v. Doees importance sampling work in this case? 1Indeed 1t does,
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as we show in Figure 7, with N = 1000 and in = 13.8. The crror is not as small

as it was in Figure 3, but this could be compensated by increasing N.

Example 7: Sum of Log-Normal Variates

The distribution of the sum of lug-normal random variables is difficult
to compute by conventional numerical methods. Let us begin with an exponen-
tially distributed random variable xk as one of K inputs to the processor in

Figure 1, with x = 1. We will then generate a Gaussian random variable of

unit variance as in Exawple 4,
8 /Zik cos 6 . 3)

where 0 is a uniformly distributed random variable (0,2n). The log-normal

random variable is pencrated as
Lo =e , 44)

where o, is the stindard deviation of the log-variate. The median value of

2k will be unity. The output of the processor will then be
K
ye Y o . (45)
kel

for which we will use importance sampling to estimate its distribution func-
tion. The weight will be given by (40).

Beciause of the complicated processor above, there is no straightforward
way to choose ;m which modifies the input distribution for importance sampling.
Therefore, we will try some arbitrary values. 1In Figure 8 we show the exper-
imental distribution functions for eight cases where we have varied x  from
2 thiongh 30 iw steps of 4. In each case K = 2, 0L = 1.0, and N = 1030 ob-

servations.  We see that all but one of the cases tend to be clustered about

A straight line in the format plotted. The excepticn is the x =2 case, which
m
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1s too small to produce values of y frequently enough in the range of inter-
est.  The remaining cases establish the validity of importance sampling for
this cxample since vach estimate is unbiused; the spread of the cluster is
a measure of the standard deviation of the estimate. By inference, ;; -]
(which is conventional sampling) with a sufficient number of observations would
also produce a result that would fall within the cluter in Figure 8. Almost
any value of km, especially in the interval 6 < ;- < 30, could be used with
importance sampling to produce an acceptable result., However, since xm = 3:
optimizes the procedure for a single Gaussian random variable at Q(Y) = 10 °,
there is probably no requirement to exceed this value in the general case.
We could atso repeat the above procedure whenever K or o, were changed.

We have also used importance sampling on (45) by beginning with indepen-
dent Gaussian random variables as the input to the processor. The above con-
clusions were unaffected by this change, however (the range 2 < om < 8 proved

satistactory).
Franple 8: Sun of log-Normal Phasors

A situation that is comnon in the analysis of radar clutter is the sum-
mat ion ot random phasors where the amplitude of each is log-normally distri-
buted. We will gencrate the log-normal random amplitude lk as in the previous

section (but o) mow refers to the sigual amplitude) and then generate the ran-

dom phasor as
vy = Qk e , (46)

where ¢k is a uniformly distributed random variable (0, 2n). Finally, we

form
- 2
EA . 7
k=1
for which we will nse importance sampling to estimate its distribution function.
Tn Figuore 9 we ~how the experimental distribut lon funct ions for three

Cases, x - 18, 22, and 26, where K=2, UL = 0.5, and N = 1000 for all cases.
The experimental curves again cluster fairly closely throughout the entire

range in probtability plotted,
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Examplc 9: Mixed Statistics

In Eximuples 5 through 8 we have soper fuposed random samples from the same
statistical distribution. But in radar and communication systems, signals are
often combined with mixed statistics. For example, radar clutter, which is
often assumcd to be log-normally distributed, would be combined with thermal
noise, which is Rayleigh-amplitude distributed. In this example we will sim—
ulate this case and use importance sampling to estimate the distribution func-
tion. We will again begin with two exponentially distributed random variables
as the input to the processor in Figure 1. A log-normal phasor, Vl, will be
gencrated from one of the exponentially distributed inputs, X}, by means of
(43), (44), and (46). The Rayleiph-amplitude phasor will be generated from
the sceond exponentially distributed inpuc, X, @18
v, = /;; (cos ¢ + j sin 0) . (48)

where 0 is a uniformly distributed random variable (0, 27) that is generated

within the processor.  The output of the processor will be
y = IV, +av,|? (49)
1 2 '

where a 1s o factor used to scale one process with the other. We will con-

strain x = 1 for both inputs.

In Fipure 10 we show the application of importuance sampling used to es-

timate the distribution function of y for a =3 and N = 104 observations. The

four values of }ﬁ = 14, 18, 22, and 26 were used to penerate the four experi-

mental curves. Note that they are tightly clustered, especially for the higher

probabititics shown In the figure, We have also shown the coxact distribution
functions for the components that make up the sum in (49).

Since the four experimental curves in Figure 10 are so closely clustered
throughout five orders of magnitude in probability, cven with such widely dif-
ferent values of the importance sampling sealing parameter, ;;, we can conclude

with high probability that the true distribution also lies within the cluster.

Thus we can alse conclude that importance sampling works when the process
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under investigation involves a combination of random variables with differ-
ent statistics. In the application of importance sampling one probably should
create all random variables by some transformation of a set of input random

variables with a common distribution.

Exumple 10: _ CFAR

A simple approach in radar to achieving a constant false alarm rate (CFAR)
in the presence of nonstationmary noise is to set the detectjon threshold on
the basis of the average noise power in a number of rveference samples where
each of these samples Is assumed to represent noise only. Such a scheome is

denoted as cell averaging CFAR.  The output of the processor might be

= - »x<——
YT o (50)

> x,

i=1 !

where x is the sample under test and the set of samples {xi) form the CFAR
reference. Note that if we modify all R+l input variables equally by changing
the comnon mean value, the output y remains unchanged and importance sampling
would seem to be inapplicable in this case. One could apply importance sam-
pling to y if p(y) were known; however, this would be a severe limit to the
approach.

In order to find a method that works on the input variables it was de-
cided to treat the numerator in (50) as the input process; the denominator
wil) be generated internally to the processor, just as we generated 6 in
Fxample 4. The reasoning behind this choice is that the variance of the de=
wominator i wuch less than the numerator, and the low probability behavior
of the numerator has a much greater twpact on the outcome than does the de-
nominator.  However, unless R is reasonably large we will not get much of an
improvement with iwportance sampling compared to the conventional approach.

Lf the random variables are exponent ially distributed, the following number
of obscivations N will be necded for each value of R to provide the same

quality of rcnult with importance sampling 1Q(y) - 10-6]:

S WAL . S e

— s




|n|w|200|100| 50|zo I

1000 | 2300 | 4700 | 15,000 | 170,000 |

In most applications of cell averaging CFAR in radar we will also employ
some noncohvient integration of samples prior to forming the CFAR ratio. In

such cases we can write the output as

e

¥
-t

y g o (s1)

3(“1”:*
*

[
—

Usually there will be M reference samples for each sample in the numerator,

so we can write R = KM.  In a typical situation we might have K = 6 and M = 10
so that R = 60, which permits us to use a reasonably small number of replica-
tions to dectermine Q(Y) with importance sampling applied to only the numerator
of (51). In Figure 11 we show the results of this case with N = 10,000 obser-
vations; all random variables are exponentially distributed and ;; = 5x for
the K = 6 input variables. Thus importance sampling also works with cell

averaging CFAR, but we have been forced to redefine the input to the processor.

2.4 CONCLUSIONS

Tmportince sampling has wide application in the simdation of signals in
radar and compunication systems. It is robust and efficient, producing re-
liable estimates of the low-probability tail of the distribution function with
typically 1000 replications of the experiment. It has been shown to work with
multiple input processes when all inputs belong to the same distribution and
are distorted equally.  For a process involving a combination of = :eral types
of signals, cach from a different statistical family, one can still apply im-

portance sampling by redefining the procedure in which the signals are gen-
erated.

In offect, a new processor Is created so that all input signals will

= =

A ————
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belong to the same statistical family and all will be distorted equally in im-
portance sampling. In sgme cases, such as with cell averaging CFAR, we will
even have to redefine the input to tne processor. It has been shown that one
can begin with either Causslan or exponentially distributed signals and gen-
erate practically any combination of statistical signals used in the simulation

of radar and communication systems. We are unaware of any situation of practi-

R cal interest where this procedure would fail.
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3. MODULATION OF CLUTTER WITH A SCANNING ANTENNA

There are two basic ways to scan the antenna in a ground based
search radar: ecither continuously or step-wise. 1n the latter case
we can asswme that there is no antenna motion relative to the ground
for a fixed time which we designate as the on-target time. Received
pulses from the ground clutter will be partially correlated which is
due entirely to the internal motion of the clutter itself (the wind-
induced motion of trees, etc.). If the antenna moves from pulse to
pulse, then the return fron any point on the ground will be amplitude
modulated as a result of the time-varying antemnna gain in the direction
of that point. The correlation properties of ground clutter will then
be atfected by the scanning modulation in addition to the internal
motion of the clutter. In many cases, the scan modulation effect
dominates the internal motion effect, and for simulating clutter signals
the scan modulation severely complicates an otherwise straightforward
implementation.

For the purposes of this discussion we will distinguish between
two types ol radar signal processing: continuous aad batch. With
continuou:. processing the radar generally utilizes all past data in a
recursive filter to process cach pulse, and there is usually one output
signal for cach pulse.  Continuous processing is often implemented in
cont invous ly scimmming systems, at least for older radars. With batch
processing the radar collects a sequence of pulses before any processing
is implemented, and the processing from one batch to the next is independent.
Batch processing is implemented on all step scan systems (as known to
the author) and some of the newer continuous scan systems, especially the
3-D search radars utilizing an electronic scan in elevation. The FFT
processor is one cxample of a batch processor.

The distinction between continuous and batch processing has a dra-
matic effect on the techniques used to simulated clutter signals, so much
so that the techniques and computer algorithms used for one system will
bear little similarity to those used for the other. 1n effect, there
will be two distinctly different computer programs required to simu—

Tate both cases. The reason is that the continuous processing
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system demands almost a pulse-by-pulse approach to computiﬂg the inter-
action of the antenna with the clutter geometry, while the batch pro-
cessing system usually needs to be updated only once for each batch of
pulses. The latter case is simpler and cheaper to simulate, and few
questionable approximations will be required out of necessity. For this
reason we will concentrate our discussion on the continuous processing
system. We will assume in the following analysis that the radar has 2-D

resolution and the aotenna has a fan beam in elevation.

3.1 FORMULATION OF THE CLUTTER SIGNAL

Let us designate the complex signal associated with the kth scatterer
in a range resolution cell as Vk(t). which we have made time-varying in
order to account for internal wotion of the clutter. 1n general, |Vk(t)|2
will have the dimensions of radar cross section (RCS), or some power
sealed version of it according to the radar range equation. 1In addition,
let g(0) be the onc-way voltage gain of the antenna in the azimuth, 6,
direction. The composite signal (complex voltage) received by the radar

when the antenna scans continuously in azimuth will be proportional to

V(L) = ka(t)gz(eo-rbt-ek) (52)
k

where 00 is some reference angle, 8 is the scan rate, Gk is the azimuth

of the klh scatlerer, and the summation is performed over all scatterers
within a range vesolution cell. Pifferences in range among scatterers

that would etfect the phase of superpesition in (52) are implicitly included
in the definition of Vk(l).

As written (52) is nontrivial to implement because Vk(t) is a
two- dimenslonal process:  spatial and temporal, Without any simplifica-
tion (which can bc done only through approximations) we must evaluate
(52) for cach pulse, and at the very least we must have one scatterer
(in o range ring) for eiach pulse throughout a 360° scan. For a PRF

of 400 Hz and a 10 sec scan we will have 4000 total pulses and at

least 4000 scatterers. The process Vk(t) is thus described by a
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4000 x 4000 matrix {neglecting the "edge effects” at the beginning
and end of the scan). Clearly, some kind of approximation is in order
at this point to reduce the size of the problem.

One approach would be to assume that g(6) is negligibly small for
|8} larger than some value (where 6 = 0 corresponds to the mainlobe
axis.) We could simulate only the mainlobe or the near sidelobes of
the antenna, and assume that there is no éontribution from sidelobes
furt: .r out than some point. The problem is that in some cases (in older
systems) just simulating the mainlobe might be adequate but in other cases
(in newer, high-performance systcms) we might have to include many sidelobes.
Just where we should stop simulating sidelobes is not readily apparent
since it depends on the system being simulated. Few ground rules can be
given cither because very little analysis has been performed on this
subjoct.

Another approach to simplifying (52) is to focus our attentjon on Vk(t).
In general, this process can be assumed to be random (for the objective
of determining detection performance), with the statistics of one scatterer
being, independent fram any other.  The random process will be spatially
uncorrelated. 1t is fairly common in the literature to break up the
scatteriug propertiecs of pround clutter into two components: an ac
component and a de ¢omponent.  The ac component, the time-varying one, is
the result of tise motion of trees, brush, grass, etc., and is generally
made up of many individual scatterers (e.g., the Icaves on a tree)
where no single one dominates.  Such a process is easily justified to
be Caussian, at least within a relatively small area on the ground.
On the other hand, the de component is associated with rigid objects,
suchas bare pround, tiee trunks, man -made structures, etc., and non-
Coesian statistics usually prevail in this case. 1n general, the de
component is strenget (higher power) than the ac component.

With the above distinction between the two components let us define

V(1) = v Vi () (53)

whiep e Vk is the de component of the k'h

scatterer and Vk(L) is the ac
component . Tt we substitute (2) into (1) we obtain
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V() = zk:vkgz(oa+ét.—ok) + zkz‘.lk(t)gz(00+6t-0k) . (54)

At tirst glance it appears that we have complicated the situation because
we now have two summations insted of ome. However, the first one is
straightforward; it is a circular convolution, something that is easily
implemented. For the sccond summation, which has all the inherent complexity
of (52) we will truncate the antcnna pattern as described previously, but
now the effect of the Lruncation will be much less significant s&nce ;k(t)
will usually be wuch weaker than Vk(t).

Equation (54), or at least the second term of it, is not particularly
economical Lo implement in terms of computer time, especially when
computing false-alarm performance. For this reason we will pursue

further appruximations.

3.2 FURTHER APPROXIMATIONS

In generad (52) and (58) describe a nonstationary process because clutter
samples in onc azimuth sector can be mouch stronger than in another. This
is another way of saying that clutter is spatially nonbomogeneous. If this
property of clutter applies to both terms in (54) then there is little more
we can do to simplify the expression. However, if the ac component of
clutter is homogeneous (mere speculation at this time) we can treat the
second term in (84) as a stationary process. With this assumption we

can apply Fourier analysis to determine the spectrum of this term which

we rewrite as

D 2,0 o
v () - 217 v, (08?6 +0t-0,) (55)

itn determining the second moment, let us write

* - C T\ ~% 2 - 2 -
Vo v, () %‘Vk(‘l)vg(tz)g (0,+0t-0,)g" (6 _+6t-0,) (56)
When we take the ensemble average of (56) the cross terms vanish as

- ~ & -
Vk(‘l)vl('Z) =0, k#1L




so that

YT . 2 .
Vac(‘l)":c(‘z) = ; Vk(tl)V;(tz) gz(ao+o:1—ek)s (eowcz-ek)

autocorrelation function
of composite process

autocorrelation function of
clutter internal motion

The autocorrelation functions above will be assumed to be nonstationary
(even though we will later assume that the autocorrelation function of the

clutter internal motion is stationary). Thus we will define

N S —
R(tl,t2) = Vk(tl)Vk(tz) (58)
S
R (E1,t5) = Vac(tl)vac(tz) (59)
and
2 .
hk(t) =g ((')o + 0t - Ok) (60)

Note that we are assuming that (58) {s independent of the subseript k so
that the clutter process is spatially homogencous. With this notation, (57)

becomes

R (taty) = ‘2( R(t;,t) by (L) by (£)) . (61)
At this point we will introduce the two-dimensional Fourier transform
as nsed in Reference 7, so that

62)

- B - ~j2n(f,r, - f. ¢t )
l(fl,fz) = j:/' R(tl.tz) e 171 272 dtldt2

A g
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and

- . jan(f . - f.t.) 63
R, t,) _[[F(fl,fz) it b6 Wk 2 Y 3¢ S (63)

1

with a similar set of expressions for rac(fl,fz) - Rac(tl,tz). The two-

dimensional Fourier transform of (61) ig now
. - ® —-jom(f .t -f t.)
Vo (f101p) ‘{‘ff Rt ,t) by (€)) by (1)) e 11772727 arjdr, . (64)

Let t, = t.l - 17 and assume that R(ll,l.z) = R{1), which is the definition of

a stationary process. After some manipulatfon we can write

IR MR P4 Py yo-d2me (fo-f.)
ruc(rl'fz). ‘); k(D e zl]hk(tl)hk("l'l)e 1V1 72 dtl dt .
(65)

The quant ity within the braces is the ambiguity function of the waveform

hk“)' Let us define

X, (1,9 ‘f"k(t)"k(“‘) eI g, (66)

so that (65) becomes

rnc“l'f'z) E f:(") Xk(T.f1~f2) e-j2nf21 d1 . 67)

This is about as far as we can conveniently go without solving for a speci-
fic example.

3.3 THE_GAUSSIAN BEAM

I we asisume that the antenna beamshape is Gaussian then the integrations

become relatively tractable.  In particular, let

g tz
h (£) = e a (68)
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for the moment. Then it can be shown that

2.2 2
Xk(‘»f) - ’;; L /2a e~27 12 L . (69)
Now {f the anteuna pattern is defined by

)2 (70)

—(00/03d8 .

g2(@0) = e

where oo = 1,6651 and e]dB is the one-way half-power beamwidth, we note that
from (60) and (68)

a = ((!6/0.“‘”)2 ’ (71)

and

. . 6 . 72)
trt+ (0 -0)/0 (

Thus  (69) is piven by

0 2.2 . 2 .. o
Xk“'f) 7 ‘/111 'it'IB (."'1("”'1(“5/“0) . “(uU'/u'idB) (‘)Zﬂl ((Oo-Ok)/O 1/2) . 23)
f

Note that in (67) the subscript k is only associated with the ambiguity
fomtion, and in (73} the subseript k only appears in the last term. Thus

if we rum (73) over k we must evalute the following expression

j 2 ((ou-ok)/éq/z) . (74)
k

However, as the incroments become small so that the summation approaches an
intepration, (74) will have a significant value only for f * 0. As the

limits on the intepration get larger and larger, (74) becomes more like a




hd-function, &(f). For our purposes we wil) assume that it is a 6-function !
because we will never employ long enough integration times Lo be able to re-
solve the difference in shape of (74) from a 6-function. We must also in-

clude a scale factor in the evaluation of (74) as :

J2nEC(0_-0.)/0-1/2) _ 0 as)
Z e o k AU 8(1)

where AU is the azimuth spacing of the clutter samples around the range ring
(or the average spacing if the samples are nonuniformly spaced). With this

assumption the summation of (73) over k becomes

0 N 2
. n 3B -%(a01/8 ) 76
Zxk“"' P e a8’ &(1) . 76

Furthermore, (67) reduces to

Faefyefp) = 801y 'fi(r)x(t) 32T g,

an

where
2
) : (78)

- 0 o
x(1) /" 3B h(a01/6, g

2 wpe

Note that  (J7) is just the autocorrelation function of the beam scan modu-
Tation function in (60) with the Ganssian beam assumption. Furthermore,
71) is singular along the fl = fz axis, which means that the resultant
process in stationary (7). I we designate Sac(f) as the power spectrum

of this stationary process, then we can write

-j2uft

5. =J[ R(x(1) e dt .

Now let s define the following Fourier transform pairs




o o .

S mtf) R(t) (80) l
G(f) <> x(1) (81) !

i

i

so that the spectrum of the composite process in (79) can be written as

S, (f) =S m*c(f) (82)

where Sim(f) is the spectrum of the clutter internal motion, G(f) is the
scan modulation spectrum, and the star designates a convolution,

Let us continue with the assumption of a Gaussian beam. We will define

a’d
fg 5 (83)
210,54
i so that when we take the Fourfer transform of (77) we obtain {
0, 2
Gy = /T MB o ~(af/f) (84)

2 a0 S s
8

S me— —

normalized to unit power

Notce that fr is the two-sided half-power spectral width. Let us also assume

thut R(1) is o Gaussian-shaped autocorrelation function

BAD . 2
R() = T "0 (85) '

tote that this autocorrelation functjon applies teo a single clutter sample;

therefore we have chosen l’,r as the average power associated with all clutter

within a range ring throughout 27 radians in azimuth. The Fourier transform

of (83) is also Caussian shaped as

I'T/\(l

2 /"'im
S ma—— v ———

2
) A (86)

S,
im

normalized to unit power




where

b= Tlful/u.

and fim is the two-sided half-power width of the internagl motion spectrum.

‘The convolution of (84) and (86) is

0. 2
il 3dB o e~ (E/E )

s (f) =P, — — (87)
ac T o Jieom Juf
ac
- — L\ S
v
normalized to unit power
2-way half-power bcamwidth : 2m
1.064
h total power in range ring
where
2 =62 4t (88)
ac im 8
We can neglect the scan modulation when fim >> fs. or from (83) when
v 624 0
Ui .624 U/U3dB (89)
We can repluace the - sign with a > 4.0 without any noticeable effect on per-

formamce.




4.  CENFRATING CLUTTER SEQUENCES FOR A GROUND-BASED RADAR
In Reference 8 several general tecliniques are described for generating
clutter sequences. They are all based on properties of the discrete Fourier
transform and the fact that samples in the frequency domain will be statis-
tically Independent of each other. We will generate a set of independent
random phasors {X(nAf)) at uniformly spaced increments, Af, in the frequency
domain, such that .

Xmary |2 = Ats(mAf) (90)

where $(f) is the desired power spectral density and the bar on the left side
of (90) designates an ensembel average. The amplitude distribution of the
phasors {X(nAf)} nced not be Rayleigh [8). The correlated time sequence is

ubtained by taking Lhe discrete Fourier transform as

J2nknAfAL

2 (KAL) =2 X(nAf) e 9
n

Usually the sample spacing in the time domain, At, will be given (e.g., the
pulse repetition period in a pulsed radar), but At is under our control. Be-
fore we define how Af should be chosen we note that the time sequence repeats

with a period given by

T = 1/Af (92)

T

Let us alseo detine the two sided hallf-power width of the spectrum as f3dB'

The correlation distance is then approximately

T o=

c deB (93)

Since the time sequence repeals with a period Tr' we can utilize only a
portron ot the period without having the beginning of the desired sequence
being correlated with the end. We should therefore choose

i T. ST + T (910)
r - <
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where T is the duration of the desired sequence. 1f we make use of (92) and

(93) we can rewrite (94) as

Af < oo B (95)

Therce is one other constraint on Af: We must be able to resolve the spectrum.

From Keference 8 (p. 120) we must have Af € 0.63 € for a Gaussian-shaped

3dR
spectrum, The constant will be slightly different for other spectral shapes,
but it will probably not be less than 0.63 for ground-based radar clutter

spectra.  Therefore we can write

1.60

1+ f3dBT

Af € 0.63 fy )« min]1,

(96)

1n general, T will be less than 0.60 for a ground-based surveillance

3dB’

radar, so the simple constraint Af < 0.63 f will apply in most cases; how-

3dB
ever, (96) will always be applicable.

There are two pencral ways to implement (91): the fast Fourier transform
(FFT) and brute-force approaches. We will now discuss each.
4.1 FFT APPROACH

Let us define the repetition {requency as

lr = 1 /At 97)

Next, let us divide this interval into Nr equal increments so that

A = /N (98)
r'r
From (97) we note that
Nr - L/AtAL (99)
s0 that (91) can be written as
N1 J2rkn/N_
x(kAL) = " X(nAf) ¢ (100)

n=0
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which is the conventional definfition ot the discrete Fourivr transform that

can be implemented as an FFT.
In opder to determine how large Nr should be let us utilize (98) and the

inequality Af € 0.63 ¢ » and write -

3dB

No> L60 f /fq aol)

with the understanding that Nr might have to be even larger if (95) were to

apply. Now let us work with some numbers. A general rule of thumb is that

SV

the spectral width of ground clutter for a ground-based radar with a non-
scanning antenna is about 3Z of the maximum wind Doppler [8]. Thus we can

write

f)dH = .06 VU/A

whire Vu is the wind velocity and A is the wavelength.  For Vw = 10 m/sec and
< 2 L 12 m o (5-baud) we hiave l\db = 5 liz., 1f the PRF is 1 kHz (fr = 1000 Hz)
then (101) Lecowmes Nr - 320, which s a large number, especially considering

that we might utilize at most only about 16 samples in the time domain.

the disadvantage of the FFT approach, at least as defined so far, is that
wost of the spectral samples will be zero.o  lven though the FFT is efficient,
't omust sUEl1 imploment the wultiplies by zero.  The next approach aveids

this shorteoming.

SL2 0 BRUTE- FORCE AFPROACH

The brute-force approach ds a divect implementation of (91). We define
the samples in the freguency domain only over a limited region of the power
gectral density,  HEowe utilize Af < 0.63 £3dB' then as few as 5 or 7 sanples
ST be suftficient to derine the spectral process (as detcermined in Refer-
cee BoTor Caussian shaped spectrag the rule might be different for other
pecttal shapes). Moreover (Y1) is implemented only for the desired number
of time vamples.  If Nl and N are the number of {requency and time domain sam-—
ples, vespectively, then the computation time will be proportional to the pro-
duct NN:' instead of ernger for the FFT approach. But since N << Nr and

NI : N' will usually be trae for ground-based radars, the brute force approach

will uswalbly be faster than the FFT approach for generating clutter spectra.
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4.3 FFT APPROACH WLTU INTERPOLATION

1f (r S fjdu' as 1t is with most ground-based radars, then many consccu-
tive time-domain simples will be correlated. We can increase the sample
spacing At in (91) or (100) to reduce the computation time for the Fourier
transform, and then utilize interpolation to obtain samples at the desired
rate. Lot us define the reduced sample spacing in the time domain as At’',

and

ho= At/At’ (102)
Similarly, we will define lr' = 1/AL', s0 that

h=f 'Ifr (103)

turthermore, we will detine the number of samples in one repetition interval

in the frequency domain as

N ' = fr'/Al (104)
L) as o result

= [
Nr Nr /h (105)

interpolation in the time domain causes spurious responses in the fre-
quency domain {Ef. If we wish to hold these spurious responses to 50 dB be-

low the desired clutter power, we must choose fr' > 10 fEdB if linear inter-

polation is used {8, kEq. 8.61}. Now we can use (103) and write h > 10 f_?dB

however, if this ratio is greater than unity we will not implement interpola-

tion. Thus we can write an equality that will provide -50 dB spurious responses

for linear interpolation as

h = min{10 f'de/fr' 1} (106)

(0 we usie A < 0,63 f in (104) we van also write

3

AN 1]
NTX W60 £ /e, (107)

which is equivalent to (101) applied to the reduced sampling rate. If we com-
bine (107) with (103) we obtain

/£ ;
r
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v .
Nr > 1.60 h fr/I3dB (108)
and with (106) we have
1]
Nr > 16 s if f3dB/fr < 0.1 (109a)

> 1.6 1 /f , otherwise . (109b)
~ r - 3d

B
Note that (109a) provides the largest lower bound on Nr', so that we can write
tor all cases Nr' > 16, This 1s a factor of 20 less than Nr in the example

in Sectlion 4.1,

Let us define N = T/At. Then from (93), (94), and (97) we can write

N
> 1
N2 N + rr/deB (110)
With (105) and h = 10 f?du/fr' we obtain another lower limit on Nr’ as
N2 (N + 10k <Iin)

sully for a grounmd based surveillance radar this limit will be lower than
(109a) .

In Table 1 we list the performance that can be obtained for various param-
vter cheoices.  The use of the table will begin with a specification of the de-
iired spurious spectral respeonse level and ;ccuracy. For efficient computation

the lTowest value of Nr' should be used, although some consideration should be

t

diven to the use of Nr = 16,32,64,0tc., because these values are especially

ctficient F¥T sizes. We will be given N, the number of time samples being

utilized, aad the ratio f,

'Jdls/[r' We will then compute

hos ) T (112)

rfldB dy T r

vl re (1r'/1 ) v ogpiven in the table. 1f h - 1 we will not implement inter-

dB
polation, Next we will check the constraint on N in (111), which we rewrite as

N < Nr'/h - (Fr'/[

Z!dB) a1y
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If it is satistied then we can use that particular option; otherwise, we will

have to use a larger value ot N' Let us now consider the example f /Ir = .01

and N = 32, and assume that Option A would be suitable if it sallsfiezdlt;he con-
straint on N, We obtain h = U 10 .ond the constrafint N ¢ 150, which works. On
the other hand, suppose that "}du“: + .0% and the performance of Option E
were the minimum acceptable.  Now we otaan h = 0.80 and N < 64, which works
(Options F and ¢ would also work). We should comment that when h is close to
unity, as in the last example, interpolation may not offer any computational
advantape over the straight FFL approarcii. We could have chosen Af = fr/blo =
L3125 f‘mu' and we could have utilized N - 64 -~ 20 = 44 time samples without
interpolation, which would have renulted in a slightly faster computation. In-
terpolation pays off when h < 0,9, especially so for very small values of h.
When 0.5 < h < 1.0 the issue is not so decisive as many factors come into play.
We can comparce the computation times tor the brute-force and FFT (with in-
terpolation) approaches.  For the former the computation time is proportional
to N . Neo where Nf is the number of samples defining the power spectral den-
ity For the FFE the computation time is proportional to Nr' lng2 Nr'. On
e partticular computer the hrate-force approach will be faster when N satis-

sies the tollowing:

[ . - = 7
Nl Nl i) AN},“ _/
16 N « 5 N x &4
372 N < 14 N < 10
tot Nr' © 16 the constraints of N« 4 or N < 5 will not usually be of practi-

Al ioterest in sadar simulations; cven if we were interested in simulating
o tew samples it would be still relatively officient to utilize the FFT ap-
croach with interpolation.  For Nr' < 32 there might be a few situations in

vhich the brute-foree approach would offer a computational advantage, but the

Avantape will aever be groeat,
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5. SIMULATION PROGRAM

A very convenlent, flexible, and computationally efficient Fortran program
has been developed to simulate detection performance for a ground-based radar
against airborne targets. The quadrature components of the video signal are
simulated in the neighborhood of the target, wnd the received signal is pro-
cessed in the receiver in the same manner and sequence as it would be in an
actual radar. The scattering environment is described in a statistical manner,
as well as the fine-scale location of the target within the azimuth beam, range
gate, and Doppler filter. By repecating the run with independent random inputs,
the detection statistics are accumulated in the form uf cumulative probability
versus threshold setting. LIf a target is absent, then the output is probability
of false alarm versus threshold setting. lmportance sampling techniques can be
used to increasce the efficiency of this caleutation.

Practically any situalion of interest can be simulated with parameters speci-
fied on input. Listings of the program as given in Appendix A include a descrip-
tion of all input paramcters, as well as the procedures, assumptions, and limitations

within cach simulation step. The muin program (MAIN) acts as a driver, in which

calls are made to subroutines that gencrate specific signals such as

e the target (TARCET)

e clutter (CLUTTR)

e receiver noise (NOLSE) |
1 in addition to a subroutine that processes the received signal (PROCES) and ac- ‘
cumulittes detection performance statistics (DSTINL,DSTPNT,DSTFUN). The simula-

1 tion procedure can be casily modified. For example, as written, the main program

permits two types of clutter to be generated, ground plus rain or ground plus
chaff; all three types can be generated with three calls to CLUTTR (which also

!
requires additional parameters to be defined on input).
i

5.1 INPUT PARAMETER

All input parimeters are capable of being defined in DATA statements in the
main program or via NAMELIST /VALUES/ for ciach simulation run. We will discuss .
these parameters as they relate to each simdation function,
Piw Terget

The nominal location of the target is defined in terms of its range (R) and

altitude above a spherical carth (HT). Its velocity is incorporated in the
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simulation by defining in which Doppler [ilter (KFILT) the target appears

(KFILT = 1 for dc), The average rudar cross section (RCS) of the target is

also specified, as well as a fluctuation parameter (KSWER). The fluctuation

is assumed to be slow (pulsc-to-pulse correlated but scun-to-scan independent), .

and the following cases can be handled:

RSWER Case
0 nonfluctuat ing
1 Swerling Case 1
2 Swerling Case 3 i
>0 chi-square with 2*KSWER degrees [

of freedom

The target pusition as described above is nominal; for each statistical replication

*‘ the actual position is varied randomly ithroughout the azimuth beam, the range gate,
and the Doppler filter. The beam scanning and straddling losses are thus incorpo-
ratod in the simalat ton.
Grioseas Cluttor

Spat tatly nonhomopeneous ground clutter can be sfmulated.  The model used in
thi. program is o block correlated one, in which a value of Uo {the backscatter
cawt ficient) in penerated for one square of size RCOR from a statistical distri-

but ton that ¢an be log-normal (SVP>0.) or Weibull (SVP<0.). The o, for adjacent

e ot o 2 mab N § N itk A & 11

squares in the format of Figure 12 i8 gencrated independently, but within any

square the Y is constant (hamogencous) with an assumed Rayleigh amplitude dis-
tribut ion applying to cach elemental area within the square, The global average
o s defined as SIGY on dopurt.  For homogeneous ground clutter set $VP=0.

<

Two models for the clutter spectrum (not including the scan modulation) are

f tuded.  They are a Caussian shape (IT=0) and a general shape (IT>0) of

1
sty RS
L+ (£/£)
(%]
whe to - 1T (the main program restricts the choice to IT = 2 ovr 3).  The half-
pewet npeviral width relative te the PRF s defined as FWIR.  The above descrip-

tien tor the clutter spectrum is designated as the Yac component." There is also

"

L a "ae component " the power of which is DCAC times the power in the ac component,
.
i
e N »
. - e e e e o
it - sl o >y S . o B
gt i 7 o gt aitll & oatiman —
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Figure 12, Yormat of Block Corrclated Squares on the Ground
(there is random staggering from one row to the next)
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The user must determine if there will be any ground clutter at all because
of terrain masking, and whether there will be any enhancement of short range
clutter in runge-ambiguous situations (R-C/(2.*PRF), where C is the propagation
velocity).

Rain/Chaf| Clutter

The volumetric clutter is ussumed to be homogeneously distributed in a layer
between two altitudes (Hl and 12, H2Z > H1) relative to a spherical earth. The re-
flectivity, or backscatter cross section per unit volume, is defined as REF. For
rain clutter set H1=0, A Gaussian shape is assumed for the fluctuation spectrum.
wind

The spectral width of all types of clutter, and the mean Doppler of volu-
metric c¢lutter, are functions of the wind speed (VW) and direction with respect
to the antenna beam axis (ANGL).

The Syetem
The radar system is detined by the following parameters:
PI = peak transmit power
@ = peak antenna gain, one-way
Wi = wavelength
BW = pulse (resolution) bandwidth
PRF = pulse repetition frequency
F1. = product of noisc figure and rf losses (L.>0)
AZ3DB = half-power width of azimuth beam, one way
ITYPE = type of scan (=1 for step, =2 for continuous)
AUDWEL = aziwuth angle through which the antenna steps (1TYPE=1) or scans
(YTYPLE=2) {rom dwell to dwell*
PSAT = receiver saturation level, after pulse cancellation but before

Dappler (Litering

NCOI = number of pulses coherently integrated

NNCOH = number of pulse groups noncoherently integrated at same frequency

NENCL = number of stages of pulse cancellation

NR = mwmber of ranpe gates simulated (=1 for conventional threshold

detection, > but odd for CFAR processing--the number of CFAR
reference cells is NR-1)

LAW

W

cnvelope detection law (=1 for lincar, =2 for square law)

2
a dwell cong cof NCOUANNCOILINCNCY pul.es.

g
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The processing stages In the recelver are assumed Lo be in the following order,

beginning at the front end:
e range gating

pulse canccllation

saturation

Doppler filtering

envelope detection

o threshold detection or CFAR processing
The resultant clutter spectrum for the scanning antenna (1TYPE=2) is modeled on
the basls of the Gioussian shape for the beam and input spectrum.
Stmulation

The number of statistical replications under the same nominal conditions is
specified as NREP. For false alarm analysls set RCS=0., and importance sampling
can be invoked with KSW=1 (conventional sampling will be implemented with KSW=0).

The distortion parameter for importance sampling is XM, which should be established

by trial and error (too small of a value will result in infrequent false alarms,
while too large of a value will cause underflow/overflow or other diagnostics;
XM=2. ls a reasonable first guess). As set by a DATA statement the number of
azimuth samples simulated for clutiter is NA=21, and the spacing of the samples
is computed in MAIN as DA=.2*AZ3DB., The user can decrease the running time by
choosing NA=11 and DA=.4*AZ3DB, or NA~9 and DA=.5%*AZ3DB, to encompass + 2 beam-
widths of the azimuth mainbeam. Further out sidelobes can be accommodated by
choosing NA and DA accordingly.

Debug printouts can be obtained by setting IDBG-0. In addition, it is pos-
sible to obtain a printout of the signal spectrum in the first range gate (or any
range gate with suitable program modifications).

5.2 _INIERPRETING THE RESULTS

For conventional threshold detection (non-CFAR) the output of the Doppler
filter(s) under Lest is normalized by the Input noise power divided by NCOH,
which is the approximate (receiver) noisc power in a Doppler filter on output
(it would be the noise power 1f the filter weights were uniform). These detected
vutputs are thea accumulated in a histogram, and the histogram is integrated to
ebtain the cumulative distribution function versus relative threshold setting.

For CFAR processing the output of the Doppler filter under test is normalized by

- - . i bl

-
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the average of the NR-1 range gated outputs forming the CFAR reference (half of
the gates are in front of the range gate under test, and half are behind it).

lu order to determine what the threshold setting should be set RCS=0. to
get the sfumlated false alamm probability versus threshold setting. Usually, the
false alarm probability will be given. Then with RCS>0. we can read out the
probability of detection that corresponds to the desired threshold setting.
5.3 EXAMPLES
) If NNCOH=1, KSWER=1, LAW=2, and NR=l, all signals appearing in a non-clutter
region of the Doppler spectrum will be Rayleigh amplitude and the probability of
exceeding a threshold that is normalized by the average output noise power is

given by

e*T/(I + SNR)

P(T) = (114)

where T is the normalized threshold and SNR is the output signal-to-noise ratio.

For the first example we will examine the false alarm performance with im-
portance sampling. The simulated parameter values that deviate from the built-~
In data values are RCS=0., S1G0=0., NCOH=1, KFILT=1, NREP=1000, KSW=1, and
XM=13.8. The simulation output 1s given in Table 2. Since SNR=0Q in (114) we
can easily compute what the theoretical results should be. For example,

P(8.0) = .000335, P(10.0) = ,0000454, and P(12.0) = .00000614; all values fall
within 107 of the corresponding vilues in Table 2.

For the second example we will repeat the above conditions except we will
utitize four Doppler filters (NCOH=4, KFILL=3). The simulation output is given
in Table 3. Because ot Hamming Weighting in the Doppler filtering process, the
noise bandwidth of a Doppler filter is about 25% larger than the PRF divided by
the number of filters (NCOR).  1f we thus multiply the values of T in Table 3
by 0.80 prior to the use of (114), we will get good statistical agreement.

For the third example, we add a target (RCS=4.) so that the input signal-

to noise ratio is a factor NCOH higher (4 x 8.0 = 32,0), reduced by the following
cffects

Ant enna scan .69 (~1.6 dB)
Doppler filter straddle .90 (-0.5 dB)
Range patce straddle .58 (-2.3 dB)

Total 6 (4.4 dB)
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Thus the output signal-to-noise ratio Is SNRK = 11.5. In Table 4 we show the

stmutation results, which are in good statistical agreement with (114),
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APPENDIX A
RADAR SUGNAL SIMULATION PROGRAM TO
DETERMINE DETECTION PERFORMANCE

FORTRAN L1STINGS
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° FUR=AVINGLE T Y=t mTavlatad o by,

sl M renCit
[SREX N 4.3 AT
KL-%00 R e Nt o)
LSRR SN SR AP PR e |

RESN RS B RS

COOOvPuT Thei N TG L v AL T2AT[UN
Thiwr=1,
FUANE Q.00 UNS - S00 T (PNZELLATINCCH)Y OS] Ap
PLIST PATAY)
4 PUINT varaAN?

CoSIPLLATE STOoRAT e 0 LOE S s ANT Tewt SECLD STATISTICS
(GRS I AL B B I U IR |
[ TR R B IR O I AR I N N |
O K N R T £
[SLIN I LR SRR B PR

NN gve e

|
wNLY .
ot P™1IT-nT0 s e e XR)
AL XM=Y 0T .Taer 1)
TRAwa e 00 Gu T2 30
Cart MTIST Y- o i P
CALL ASUPIRATOIT 0k Yryti )
CALL ASUMIANTU T Y Y TyXT)
1 TEOLILEGLLe .0 Ll TG 942
CALL BTN G KT Y amag et Yo a2 ie T eul P NOTSE
A PINTEY N Temaat Yiy20ounulruY L NDTSE
LIS TS PRA T R IO I CTA SR I
C20 L UV TREY Y g Y e M)A et e o5V L T LALLM mTF LR UL )
CALE ANUY AT T ol YRy riR )
Cal AUMESTOI v v Y 1exl)
THETE ety J0) o0 T 34
CALE Pt YR 1 g m e Yoo LT RE (Ll e GR
VAL NI T Ty =gt AR WS TTLA U 135 VR S L N 4 G B IR L
S 1P ESTOGIECatlan, Y U
] Efl CLUTTo Y - Y et v e st g e stialasb mIWYL @i 0T+
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(BRI ANTE N PR IS IS e N )
TR AL AR I S DS AR NN}
Fiafbsg ol o) s T g
CALL PRy TV am g i Y rOBLLTPUTE (8 (L UTITk=-~N )
Cant I Y TN LT a= 400k YielOr LIyt (1 (Lultr-an )

e - 08,0 L Ca) G T 3w
S W2 nELOEOAN (L V=], )
CAL TARCETEYR a YT rLaekSmt FoWh (LT Aol
ML ASUMIATOY s xRV L ¥R
CALL AU (NTCToexTovYlaYl}
LIS U § o LY VIP G o B CRO R R N
CALL PrNTE Y238 T T a=gtrh YR /OMPLIPUY LT TARCET )
CALL PANTHYT W AT O T s=a et Yle/eOLTPUY CF JARGETY )
Brwt Wi PECFOLY 4 SOUOTFAL ASNAEYSTS CN YD FIOST RANGE RING
WOLALL YYTHE=AY )0 YR
CALL AMMETt-ANY e, 0¥
LALL YYITHIAPULS o XPyYE)
CALL Y“1ITIAPLLS «XIe¥1)
CACL SPCIRPMEYRe YT o NPULS NS08 wGT )
CALL ASUMEASe YR e54Y)
bAoA PROCESS THE S I6NAM
CALL PRUOCESERAZ YTl K24 LAneWhCUNny NOCNCLoPSAT)
NKsRJwh J e}
Al
ThtrSkef Lal) woyys
Fhia LT ) G0 YO
D4 4 Kol e\K
DRI RS ELTE B RN WA NILE, PN |
AU LiNT MY
FOOLONT
AT LT YR o D JELY RANGE VNG
GOV L UM N YY)
CALL Padi (=AY e SN RY 454 )
Charl Pt o Nyalatit 3¢ 2CHSrECTaL O IST GaTL)
PUINT Ul THSES RO STATISTIUY
CALL UHTEUGANCT TS
Poial {10
T VR I U {
T-1)etg=1ren7y
PLfiP=1.-TTL1)
PUIRY 111 .T,pN 000
[AUNIE IS B RS

INNURMIZE X (- {le=1a /27 ) vnSUM)

l.:l. "I ll
€5 PaINT 124N M gy, .
STy

PAV 6w T/ 8 Yo ikl OR0SSING STATISTIOS Y/
! eI e b AT JON T  IXYHDATRA LG WTY)

YU HE™ TV L 2,240 T u,?)

P v i w2 Tt v 300 EVPLLTANGE SAMPLING, wEJGHT J> KEGATIVEY
! A S A R NS S X4 I N |
[}
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SUSRLUYING TALGE VUXN G R T o T2l mohbhmi ¥ ohi [LT 4AZL14DAL)

IA TElS SUMRUUIINE Thi LEYrLEX VIOV O SToNaL FBR THE TARGET 1S (RLATEC
IN Tied ARRAY-PALR (XROXID.e  THE TARGIT CUPPLER 1S WANCCY wWiTHIN Tht
FILT s AuMner RELLT (1P NCEHLGTLYD Ge RITHIN Tnf PRF (IF NGH=1).

e A71%LTn b A™ S« PSS PAST THE TARGIET BURING THE UmELL LF NPLLS
PLLSES REGINNING AT a2 wlTH AN AZIMUTH INCREMENT OF DAZ FUR EACH
PULSE. THE FCS PARAWETENS ARbgeees

TPOw = YARGET AVWIRAGE KECEIVLID PUWER (=PSCLORCSOELCAING2)
KyalR 3 SntEKUING CHI=5CULAKL PARAMET(O (SEE REFLI)

Fre $(KYAT (1f THE XF o XI-AVZAYS IS5 AS ¢ THEY wERE CI®ENSICNFC
X (NPULS ¢NR) XTINPULS eNR)

CIPEASTON YR ox ) (Y
(U IR Z00%L7Z N JNPUL S NAGACOY
LMo ON 20 pUG7 T0RG
CATA Vw1 292202004532
Pln=1PIwW
TV EKSWERLE Q) O Y1) 22
FAN I
[v. 20 J=.ekShtw
PRCE2PROJERANILO,)

PASBE A B RV
P 1Pt =ALNGEPR D))

27 ACSLRTAPL L)
o meRANE (L)
ARl LT oCaANF G )~ L9 )/ LOATINCDH)
Lo LEAR =172 AN Se )
It LIOPUtTeU) Prl ST 100 A oty
LAML XYTTE=AYONPUL %Y9Ge s AKX
CALL RMTTL-RGONPLLS o N0 X}
nr=411)
il 30 K=leMPULSY
AvG - TrIPLEX O}
SY=C0NLANG)
ST-SIN(RQCY
AMP -AacAal L AIn(ALY
AREL):=AYe YUY, ~ Oy
il dramoe (.-
It dhnel P oY GU I oY
XPLLONPL SP-A%P )08
XI4LeNPLL S) =AM o0, ]

29 b =L el
LXERLY AN ¥4

IO LUNTIN e

b juet
100 FLe®aT( /27610 Ta- 8 Aot ot caeaoll2atodt 1l
LI
- a
v - . N

W o
e L, Y

ey
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SURROUTINE CLUTTRUIXRyXI9CFCHRPCOR, SVFSTT,DCACFRTR,FOTF)

IN T+IS SUFROUTINE WE GENERATE THE CCYFLEX VIDEO SIGAAL FGCF CLLITEF
WITH A SYSF SCANNING ANTENNA, THF CLUTTER SIGMNAL IS CUTPUT 1C TKE
ARRAY FAIF (XR,XI), THE PARAMETERS AREcoces

CFOW = CLUTTER RCS PER UNIT AREA ON THE GPOUND SCALED TC RECEYIVEC
PONER (=S1GO0*FSCL)

R = FANGE OF INTEREST

DR = RANGE RESCLUTICN CELL SI7¢E

DA = A7I¥UTH SANMFLE SPACTNG

NA = NUMEER CF AZIFUTH SAMFLES
RCCR = CLUTYER CORRELATION DISTANCE

SVP = SFATIAL VARIABILITY PARAMETER
FOTR = MEAN DOFPLER OF CLUTTER RELATIVE TO THE FFF '
FHTR = DOFRFLEF WICTH OF CLUYTER RELATIVE TG THE FRF

IT = FARAFETELR SFECIFYING SFECTYRAL SHAFE (SEE SUG., FANSEC)
DCAC = RATIO OF 0C POWER TC AC FCMER

IN ADDITINAN N 1S YKRE NUMBRER OF SFECLTRAL SAMFLES USED IN THE CENERATICM ;
OF THE COSFELATED RANGCY SFGUENCES, IT SHCULT SF AY LEAST AS LARGE 1 :
AS NEULS 41 /FHTO,

THERE ARF TWO GENERAL CASES OF INTCRESTseoese

GRCUND CLUTTIER FAIN/CFAFF CLUTTES

SVF . NE. 0.  {NCNhOMGHENE OUS) SVFz6, (HKOMCCENEGLS) i
FGTE=0, 1IETR={Z*VH/WLY *CCSTANGL) :
DCACLGT, O 0C0=0. :

17=¢ ]

TF THT ELFVATICN BEAM COES NOT HAVE PTAK GAIN (N THE GRCUND 2T THE
RANGE GF TINTEOFST THEN CPOW MUSY INCLUCE THE ELEVATICA REAM REIGHYINC.

THE FORMAT OF THE XR,XI-ARRAYS IS AS YF THEY WiRF GIMENSICMECL

AR (ANPLL S NFY XTUNFULSNPY

MAOTMAOMAAN AN ANAAOAANONNAN 00NN 0N0N

DIFEASION XRC1D,XT{1Y
COMMON /COV1/ AR NPULS ,NA,NCOH,F,0K,CA
CCMMON /ISA¥/ KSH,ISW
CCMMON /0BUG/Z 1NAG
DBTA TWOPTI/6,2R31F53/
NC= (AR 41072
T-CPORSF*0R*CA
KG-CANF D .Y

ME-a1

t1=1

LC w0 1=y NG




1°

20

25

30
A

4G

100

IFIMRLEG,IFIXCRRY) GC 10 2%

SUM=0,
A7=~,5%(NA-11°0A
AA=RANFEJ. )

“A=0
W=SPTVARISVF)

60 20 J=1.NA

TFIMALEG.IFIXTARY)Y GO TOQ 15

W=SPTVAR(SVP)
~AzAA

SUM=SUM4P*K*A7GATN (A7) * %2 R

A7=A7+CA
AB=AA+K®CA/RCGF
CONT INUE

¥R=RF

FAV=SUM

IFCIOPGLGT .0 FRINT 20C,1,PAV '

ISH=0

|

i

1

TFIKSW.EQ.1 ,AND.T.EQ.NC) TSW=1 ;
CALL RANSECOXRELLY XTILLY JNPULS,FUTR,IT,0CAC,FAV) , !
IFIFOTR,ENLD.) GO TO 35 }
{

1

i

i

r

|

[ §

N0 30 k=1 ,KPULS

ARGz THCFI®FOTRYIK=1)
C=COS(AFG)
S=SINCARG)
TR=COPXF(LYI=-S*XTIL)
YI=Co*XTIL) ¢S*XFILY
XKL =YF

XTEI=VY]Y

L=L+}

CONTINUE
RF=RR+CR/RCO%
L1=L2eNFULS

CONY INUE

RETURN

FOFMAT (/77216 CLUTTR
END
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SURROUTINE NGISEUXReX1,PN)

IN THIS SUFRCUTINE THE THERMAL NOISE IS GENERATED IN THE ARREY-PAYE
(x®,x1,

PN = AVFRAGE NOISE FOWEF
THE FORMAT CF THE XR,XI-ARFAYS IS AS IF THEY WERE CIMENSIGAEL
XROAPLLE o NFY XICNFLLS,NFPY

[TMENSTICON XRE1D,XI0Y)
fORMON /1SAM/ KSW,ISH
CCPHGN /NCFL1/7 NR GNFULS
NC=(NRL) /2
L=1
Frg 26 I=1,.NR
1SH=D
TFAKSHLEReL o ANDLToEQLNCY ISH=1
0 20 K=1,NPULS
CALL GAUSST(XPELY o XT (L) 4PN)
1=le+d

2C ' ONTINUF
~ETUEN
' N

oy




SURRQUTINE FROCESIXR 4 XIaK1 K2, AR MNCCH NCNCL, FSATY

c
C IN THIS SURRGUTINE THE SIGMAL FRCCESSIMG IN THE FECEIVER IS JFFLE-
€ MUNTTG ON THE ARRAY=FAIR (XRyXTIVe THE ARGUMENTS AREceses

K1 = FIRST FILTER FOR DGPPLEP SEARCH
K2 = LAST FILTER FOR DGPPLER SEARCH
. LAW = LAW GF FIRST DETECTOR
NNCOH = NUMEER CF FLLSE GPGLPS NONCCHERENTLY INTEGRATED
NCNCL = STAGES OF CANCELLATION
TSAT = SATURATICM FOWER LFVEL

THE FOLLCNTNG CASES CAN BE HANCLED.oseo
FULSE CANCCLLATION MTI WITH BINARY WETGKTS

NCNCL = STAGES OF CANCELLATION INCKNCL#+1 = NUMRER OF FLLSESY i
NCNCL = 0 CGRRESFGNDS TO NO PLLSE CANCELLATICAM

FGFEELEF FILYERING VIA FFT

NCCF = SIZE OF FFY
NCOF = 1 CORSFSFGNDS TO NG DCFFLER FILIFFING

SATURATICGN PETWELN FULSE CANCELLATICN ANG DOPPLES FILYESING

FSAT = SATULRATION FOWER LEVEL
FSAY = 1,699 CCRRFSPONTS TO LIMFAR PROCESSING INO SATLRATILAY

LAW OF FIFRSY DEYECTGF

LA® = 1 CORFRESFCNLS TO LINEAS DEYECTOFR
LA% = 2 CCRNESFONDS TG SOUARE-L AW UETECTOR

NONCOREFENY INTEGRATICGKR AT SANME CENTER FREQLENCY

NACCK
NNCOH

NUFEER CF FULLSE GROUFS NONCCHEFENTLY JINTEGFATEC
1 CORRESPONDS TO NO NCNCGOHERENT TATEGRATION

H H

CFAE TRRFSHCLD REGULATICN ' '

NF = TOTAL NUMBER OF RANGE CELLS FROCESSFL INCULULCING TAFGEY
NR=1 = NUMFER CF CFAKk REFERENCE CELLS
L

1 CORRESFCNLS TO CONVENTICNAL THRESHEGLL PRCCESSING

THE INFUT CGMPLEX STGANAL IS IN YHF ARRAY-FAIF 1XF,XI), THE FCRMAY CF
WHICH IS AS [f THE DIRENSICN WERE XR(APULS,NRY, XIINPULS,NR),

ﬁ"?"’ﬁ"’""ﬁﬁﬁﬁ‘)"7"5ﬁ"1ﬁ"’ﬁ‘S")ﬁ")"’ﬂﬂﬁ’\ﬁﬂﬁﬁ")‘)ﬁﬂﬁﬁ"\ﬁﬁoﬂﬁﬁﬁﬂ

THE NONCOHFRENTLY INTEGRATED GUTFUT CF FILTERS X1 THRCUGH X2 AFFEARS
IN fPRAY XF IN SAMFLES 1 THROUGH K2-ki¢1, 1IF NC COFFLER FILIEFING
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VIA FFT [S IPPLEMEATEC THEN NCCH=K1:=K2=1, USUALLY IF A TARCEY IS
ERESENT THFN K1=K2 WILL CGKFRESPOND TC THE CGPPLEF SAPFLE TN PHICH THE
TARGET WAS FLACED. 1IF NO TARGET I% PRESENY THEN THREFE ARE SFVERAL
POSSYAILITIESesens

1. NO CLUTTER
SFT Ki=1, KZ=MNCO¥

2¢ GRCGUND CLUTTEF CALY WITH HAMMING FYLYER WEIGHTS
SET K1=3, K2:=NCOK=-1

3. GPOUND PLUS WEZATHER CLUTTEPR

SEY K1 = FIRSY DOFPLES® SAMFLE NGT FLANKET
K2 = LAST GOPOLFR SAMPLE NCT Rt ANKED

FOR CFAR PROCESSING YHE RANGE SAFPLE UNDER TEST IS ALWAYS THE CENTER
SA™FPLE, .
CIMENSTON XxR11y,XI(1Y

CIMENSTON 701280

COMMON /COM1/ AR,NFULS,NA,NCCH
COMMON /0AUG/ TDRG

IF(NFULS NE . NNCCH*NCOH¢NCNCLY STCF 1
IF (MO (NF 420 o NE 4 1Y SICF 2
TFINCOKWEN« 1 AN, KEoNE, 1) STGF 2
TFINCOK,EN, 1. AND, KZJNF . 1) STCF &
NREF=NEwy

NP-HFULS
10 B0 YI=1,AR
C1T(I-1)*NFULSH1
IFCIDRC LEeD0FeIGTLICRRY GG TG 22
CALL PENTUOXRILIV ZANFULS =0 46H AR 3 20KINFUIT TC FRCCES y
CALL FENTIXI(L1) JAFULS,=L+EH XTI 2GHINPUT TQ ERCCES ]
22 TFINCNCL,EC.0Y 6N TO 26
HERF WF IMELEMENT PULSE CANCELATION
rc 25 M=1,NCNCL
L=ty
NEoNEag
o 20 ¥=1,NF
XRIL)=XRILI-XRAL+ 1Y
YTELI=XTELYI=YItL ¢+ 1)
L=t+1l
23 rONTINUE
25 rFONTINNE
TFITDANGLECDOF. 1.GT4INARGY GC TG 2F
CALL FANTHEXRILIY JAFy~byHH XS,20tAFTLR CULSFE CAANCEL )
CALL FENTUIXT LY JNFymly bl XI4Z0HAFTER PULSE CEAMNCEL 0




2¢ [F(PSAT,GT.1.E9u) GO TG 32
C HERE WE IMFLEMENT SATURATICN

*0

L=y

60 30 ¥=1,NP
F=XRALY®*24XTILY * %2
IF(P.LELPSATY GO TO 30
A=SQRT (PSAT/F
XRILY=A®XR (L)Y

CTEL) =A*XT (LY

L=L+1

CONTINUE

IF(ICRCLLELQ.0F,I4GT,JCRG)Y GG TO 33

CALL FRNTUIXRI(L1Y 4, NFy=l ,6H XF 4 2DFAFTER SATURATICA ]
CALL FRNTIXI(L1) 4NPy=b,6H XT+20+AFTER SATURATICH ]

€ HERE WE TMFLEMENT COHERENT FILTERING AND NGNCOHERENT IKTEGRATICN

c

33

40

L2
S0

55

S7

L=t1

CALL XMIT(=NCOKy04,47)

NG 40 M¥=1,NNCOK

CALL CCHFLT EXRIL) ¢XTIL)LL AN, NCNCLY
CALL ATUFMINCCOHXRILY 42,7

LTLeNCCR

TONTINUE

TFOICFGLEC0OF T CTLIDRTY GO TO 42
CALL FRNTI(XRIL 1) ¢NFy=l,6H XP,20+AFTER CCH FILTER y
TALL XPTITINGCOH,7XREL1Y)

TCNTINUE

(K=KP2=-Kie1

Li-¥1

“1=1

TC 55 T=1,AR

CTALL XPTTOKK G XFULLIY o XF (M1Y)
L1zL1#AFULS

41 =M1 +KK

TONTTNUE

IFUIDAGLLF.0) GO TG 57

TALL FENT (X RINFOKKy~L46H XRyZO0FBFTER CETFCTICAN )
{FINR,Fr.1) GC TO 75

HERE WE TVMFLEMENT CFAR PRCCESSING

A0

7t

75

NREC - (INFelY /2

C 70 K=1,KK
P
SUr-Ca

“C HC I=1,NK

TFITL M oNPCY SLM=SLMeXRIL)
1 =L +KK
T GNTINUE

LT AINFC~1) KK 4K
YRUK)=NREF P XR(LY /SUM
SCNTINUF

IFLINAN,LELO0Y GG TC 75
CALL FENTIXR JKKol o 6H XR,20HAF TES (FAS
< ETURN

“NG

PRy PevE A eI s e




1

76

SURROUTINE CCHFLTIXR4XI 4LAW4NCNCLY

IN THIS SLFROUTINE WKE IMFLEMENY COHERENT FILTERING CN THE CCPFLEX-VITEC
SIGNAL IN THE ARRAY-PAIR (XRyXI} OF LENGTH NCOH., THE OETECYEC CUTFUT
APPEARS IN ARRAY Xk GF LENGTH NCON,
NCOH = SI7F OF FFT IN COFFLER FILTER EANK
NCNCL = NUMEEF GF STAGES OF PULSE CANCELLATION
LAW - ENVELGPE OETECTION LAW (1=LINEAP, 2=SCUARE=-LAW)

FULSc WEIGHTING IS APFLIED PRICR YO CCFPLER FILTERING, THE WFIGHTIMNC
FUNCTION IS COSINE CN A FECESYAL, WHcFR®

AL PHA 1. FCR UNIFORM WFIGHTING
«Jf FGR HAMMING WEICHTING

aEaNalaEeNeNe e ReRele Ne Ne e N

TMENSTION XRU1),XI(1)
IMENSTION C€128%,W(128)
GMMON /7COM17 KNRLAFULSNAJNCCH
ATA ALFHA/Z, (87
ATA Ct1V/1./
ATA N14yN2/0,0/,°1/3,141582R5/
"FINCOHGENL1Y GO TG 17
"FUINT.ECNCCHeANNGN2ECSNCACLY GC 10 1°
A=NCOw
2-NCNCL
TALL WETIGHT (h,ACOF (JALFHUY
t1r=1,
612 K=7,NCCk
VY =STRIPTI* IK-1 Y /FLCATINCOM) D *% (2TNCACL)Y
2 TONTINUE
1% - ALL FOCNDUIACCH Wy XReXR)
CELL PRODINCCOH W XToXT)
CALL FFT2CXR,XI,NCCH,-1"
17 G 2% V=1 ,KCGH

[

%

-
~

(RIKY=XR(K)Y®22 X T (K)**7

fRIKYYRAKY /T UKD

[FILAWLENG1Y XRIXI=SCPTIIXKINDY
26 CONTINUE

TETUEN

N




[

’

FUNCTIGN AZ7GAINTAZ)
C
C COMPUTES ONE-WAY POWER GAIN AT A7IMUTH ANGLE AZ (RAC)e GAIN IS NOFM-
C ALTIZ2ED YO A PEAK VALUE OF UNITY,

IN THIS EXAMPLE A GAUSSIAN REAFSHAFE IS ASSUMEC WHERE

A730R = ONE-WAY HALF<FORER WICTH tRAD)

la Ko leRa Nl

GTHMENSION GC47)

COGMMON /COML/ CUMMYLT) AZ3ICD

CATA NN/O/

TIFC(NN,GT,GY GO YO 25

NN=%

[C 20 I=1,42

CUII=EXFU=-(1,6651%C,05%(T=19)1)*%2)

20 CONYINUE ;

; 2% R=2D.*AESTA7Y/A73LE |
. TFLALGTel0eY A=W, i
[ 18-8
A=p-1a
TA-TA+
LA7CATN= (1, -AY*CTIA)YSA*G(TA+1)
RETURN
FNT

R A

s arth ARl uies




c

C COMPUTES ONE-WAY PCWER GAIN AT ELEVATI(N ANCLE EL

8

FUNCTION ELGATATIELY

(FACY, GAIN IS NCRY~-

C ALI7ED TO A FEAK VALUE OF UNITY,

C

C IN THIS EXAMFLE A COSECANT-SOUARE REAMSHAFE 1S

c

20

25

ASSUMEL,

TIMENSION €420

fATA FT2/1.57079€32/

FATA £L0/41/

1 ATA NN/G/

TFINKLGTL.0) GC YO 2°

P N=2

10 20 I=1.41

F=FI2*(1-1)/40,

(T =1,

1FCEGTLELS) GUII=(SINI(ELO)/SINC(E))®*2
CONTINUE
Glu2)y=G6141)
£=40,"EL/PI2
IFLE.GT 400
IFtF,1 7,0,
IF-E

[AEED £
I€=TE+1
FLOATR=81 ,=EVRCUTFISESGITE 419
RETURN

FNC

f=40.
E=C,
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FUNCYION SFTVAKUSVF)

9

THE RANDOM NUMFERS CORRESFONDING YO THE TERRAIN SPATIAL VARISEILITY

ARE GENERATED IN THIS SUERGUTIAE,

IN ALL CASES THE MEAN VALUE OF

SET

19

20

THERE ARE THREE CASESseeae

SVE.LF.Ce WEIBULL CISTRIBUTIGON, ~SWzNEIBULL PARZMETER
SVF.ENO. HOMCGENEQUS TERRAIN
SVP.GT. 0. LOG~-NORMAL OISTRIAUTICA, SVF=STC OEV CF

LOG-VARIATE (NEPERS)

REF.1, EQS 9«10 ANC 9.1%

GATA £S/C0./

SETVAK=1,
TFISVP.EQ.Je) RETURN
TFISVF.GT.04) GC TC 20
TFISS.EG.SVF)Y GO TG 10
$S=Sve

Az=SVF

GATGAMMALA+L .Y
E=-ALOG(FANF (0.0
SPTVAFR=E®**A/GA

RETUFNM

G=CALSSIDUMNKYY
SFTVAR-EXPISVP*(G=,5*SVF))
FETUYFN

ENC

THE FANCOF KUMFER IS UMITY,
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SURROUTINE RANSEO(Xﬁ.!I.NrFNTRoIY'ECAC-PlV‘

IN THIS SUBROUTIM WE GENERATE A CCRRELATEC SECUENCE CF GAUSSIAN
RANNOP PHASORS IN THE ARRAY-PAIR (IXF,XI) CF LENGTH N, THERE ARE TWC
CASES FOR THE SFECTRAL SHAPEseeas

Iv=0 GAUSSIAN SPECTRAL SKAFE
ITGY.0 SEECTRAL. SHAPE 1S 17014 L2F7FHTRYI®®ITY

IN EITHER CASE FHMIF IS THE RATIO OF THE 2-SIOEC HALF=-FCWER SFECTRAL
WIDTH ANC THE PRF, THE ABOVE SPECTRUM TS DESIGNATED AS THE ZC-CCFFCN-
ENT, IT IS CENTERED AT DC. THERE IS ALSC A DC(-COGMFCNENT ACCEC 7O THES
AROVt 4 WHERE DCAC IS THE RATIG OF DC TC AC FOWER., TFE AVERACE PCHWER
OF THE OUTFUT SAKPLES IS FPav,

THE RANDOM SEGUENCE IS GENERATED PY THE FFY-METHGC WITH INTERFCLATICM.
THE FAKAMETERS CHGSEN RELOW WILL FROCUCE A PAXIMLM OF -SOTE SFURICUS
SPECTRAL RESFONSES WITh AN ACCURACY OF AECUT 2-PERCENT,

DIMENSTION XRULY (XTI (1) BRE2E7),AT1257),5¢(257"
NATA FF/=14/7411/=1/74NN/~2/
TFUFUTR N FFAANCAITLEC.TITJAND.NLECL,NNY GO TC 2t
FF=FWTF
T1I-17
NN=N
IF(FHNTF,LELO4) CO TO 65
F=AMINI (10, *FRTIR,1,)
NF=16€
10 NFH=NF/KH=-C,§
IFINLSLELNFH) GO TC 12
NF =2 ®NF
6C 70 10
12 IFINF,CT,?2%E) STOF 11
NFS=NT /248
LIM=3*KFYFRTR/E
Stir=1,
bP 20 K=2,NF2
SIKY) =0
IF(V,rT,LTY) GC TC 15
TFCITalbe0) SCKVZEXFI(-(1,6851%(K=11®F/(FHTR®*AF))*77)
IFUITAGTa0Y SIKY-1./702,8(2,%(K=1)%FK/(FRNTIRSAF))*4]T)
15 SAINF a2 -K)Y=Ct(KY
70 CONTINUE
SUM=ZSUMINF 4 SY
St1Y-St1r+Lracecym
SUM=SUM® {1, +CCACY IFAV
CALL YRODU=NF,1,/SUM,S5,5SY
35 JFIFHTR L F.0.Y 0O TO RS
Di, Wl K=t NF

D =
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CALL GAUSST 1AR(K) AICK) 4STK))Y
40 CONTINUF
CALL FFT2(AR,AI,NF,1)
AR(NFe+1)=AR (1)
ATCINF+1) AT L)
T=0,
. 0N Sp ¥=1,N
- 1=1
IT=T=-1
I=Teq
XREKIZ(1e=TTV2ARIII @ TT YAk (T41)
) XTEKI= 1. -TUIZATII)eTT*AI1I¢1)
T=T+k :
B 50 CONTINUE {
60 TO 70

€5 CALL GAUSSTURR,ET,FAVY
CALL XMIT(=N,BR, XF)
CALL X¥FIT(=N,EI,XI)

70 RETUPN
ENC
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SUBROUTINE GAUSSIUX,Y,F)
GENERATES FANGGY NUMEERS FCR THE FOLLCWING TWO DISTRIFUTION FUNCTIONS

CALL GAUSSIIX,Y,¥} GENFRATES FAIR OF GAUSSIAN RANCCY
PHASCR CCMFCNENTS CF AVERAGE FCWEF °©

CALL EXFIONM GENERATES EXFCNENTTAL FANDON VARIABLE
WITH UNIT AVERAGE FOWER

THIS SURROUTINE SET CAN ALSC EE USED WITH INMFORTANCE SAMPLINC IF WE
SET.....

ISH
XM

1 TC ACTIVATE IMFORTANCE SAKPLING
CISTORTION GF MEAN FOWEF

o

FOR THE FIKST CALL WHEN IMPORTANCE SAMFLING IS IN EFFECT WE PUSY SET

WSUM = 0,
NSUM = D

AFTER THE LAST CALL THE IMFORTANCE SAMBLING WEIGHT IS CIVFN EY
W o= (XMPPASUNIPEXFLl=C1,=14/7XMY*RSUM)

COMMNCN /]ISAM/ KSHISH XM NSUN,WSUM
CATA 7/0.7
ITYPE=1
GO 10 1¢C
ENTRY EXFI
ITYPE=2

10 XMd=3,
IFCISH.ENL 1Y XMM=XNM
E-YMMP (~ALCGIRANF (7)Y)
X=E
IF(TSW.NELLY GO TC 12
WSUM=WSEIMeE
NGUMZNSUM L

12 TF(ITYFE,GEL2) RETURN
E=SNRTIF*E)

15 A-FANF (7Y
A=AspA-1,
A-CANF (7Y
R=peB-1,
pP:=A%A
B2=NneF
C-AP+£2
TF(C.GT41.Y GC TC 15
A-g*LAZ=-R2Y/C
Y:Po®ECAYR/IC

FETURN
FNT
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FUNCTTGN GAUSSELUMPNMY)Y

c
€ GENEFATES GAUSSTAN RAKGOM NUMBER GF 2cRO MEAN, UNIT VARIANCE.
C
OATA 170/
IFEI) 1,142
1 CALL GAUSSTI(A,E,2,)
GAUSS=A
I=1
G0 Yo 2
2 GAUSS=F
=0
3 FETURN
FANC
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FUNCTION APROCt(MN,A+84C)

84

THIS SURKQUTIN- PACKAGE PKCCESSeS AkinAYS. IN EVeky (ASE 1ABSHA}) IS
The LENGTF OF aALL ARFAYS., THERE Axkt SEVEKAL ENTRIESeeveee

CALL XMIT(-NedoB)
CALL xMIT(N,4.8)
25=7SUNMIN. Q)
CALL ASUML=-NsA,LB,C)
CALL ASUMINs£48,4C)
LL=D0TIN,A,8)
Call PRODBU-NsALE,C)
CALL PROD(NB,H,0)
c=ENGY (NosARSALD
CALL PCHRINSARSALWF)
CALL ShAPIN,A,.B)
SOMe o XAMPLES ARCeeese

SUF=ZSLM (N, 4)
CALL FROC 1-Ny14/7SUM,A,A)

e eNGYINSAKAL)
ANLRM=1,/750n1(c)
CALL PROD(-NysANCRMN AR AK)
CALL PROO(=NoBNChM4AT ALY
SLFMSN=CUuT(h.A,A0)

MLl Iralecess

EZENOY ANQARIALDI- 00T (Mg AR,

SIFENSTON A(L)HLELD) ,C(1)
chihY FROC
1+ (N) 1041741°
13 Nh- =N
A BLLY
LL 11 K=1 4NN
CK) AA% 1K)

BIK)=Al1) FOk K=1,M

BIK)=ALK)  FOR K=14MN

ZE=5URMTALK))Y FUR  K=14N
CKI=A(1)4B(K) FCR Kk=140N

CIK)=A(K) ¢E(K) FOR K=14N
DU=SUMIA(KI*BIK)) FGR K=1,eMN
CIK)=AL1I*E(K) FCR K=1e4M

CIK)=ALK) *BIK) FLR K=14M
L=SURCARIKY **2¢ AT (K) *22) FCR K=14N
PIK)=AR(K)*#24A1(K)®*z F(k KI14M

AC(K) ANU ELK) ARC SwWAPPED FCR K=1,h

NCKMAL J2E 2-ARFAY BY SUM

NCGRMALLZE (AkoALl)-ARRAYS

BY TOTAL ENERGY

SLM=SGUARE CF cLEMENTS IM B-ARkKDY

Ak) +SOTUNG21,AT)




11
12
15

18

5

3

41
e
45

48

&L

CUNTINUE

Re IURN

CC 18 K=g N
CtK)=8(K) *B {(K)
CCONTINUE

ke TURM

eNTRY ENGY
ct=Ce

0C 25 Kzt 4N
tezEEYA(K)® ¥ 2 HK) ?22
COnTINGE
APRCL=ZE

xz TURN

ENTRY PONWER

CC 30 K=1,N
CIK)=ALK) **2¢R(K) "2
CUNTINUCE

we JURN

ENTRY ZSupw
SUk=Ue.

¢ 35 Kz1,N
ILM=SLMeA (KD
CUNTINIE
akrGC=SUM

e TURN

cNThRY ASUM
TFON) QDyu244C
AN==N

bnzn01)

OC 41 K=i.NN
C(K)=RAD(K)
COUNT INUE

ke TURN

UL 48 K=1,N
CUK)=AIK) 4D (K)
CCNT INUE

ke TURM

chTRY SWAFP

00 %0 K=1,N
BL-ALK)
ACK)=EI(K)
H(x)-AaA
CONTIMUE

ko TLKh

thikY D07
B " 0a

liv €0 K=1,N
GF=(PeALKI* B LK)
LUhT TNUE
Hr<CL=DP




b TUKN
chNThRY xM11
LEIN) 62460467

62 AN=-=N
Ab=At1)
DL €5 K=1,NN
ATIEY Y

€5 CUNTINUE

€& Rc TLRN

€7 DG 70 K=1,N
E(K)=A(K)

7u CCNTINUE
RETURN
ENC
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FUNCTION GA¥PACZ)
C
C COMPUTES GAMMA FUNCYICN OF A RtAL ARGUFENT
C SEE FEF.be ECS 641,15+ 641,160 AND 6,1,35,
c
CATA AL/-oSTUBBLE/AZ/.9512363/,A3/~6CC8588/4A67,424554C/,
1 AS/-.1010€T78/
X=7=1,
IF(XLT04Y STCP
CAMMA=1,
130 IFIX.LTeleY GO TO 20
GAMMA=GAMMA®X
X=Y=1,
GG TO 10
20 GAMMASGAMMA® (CLLTASPX4AL) "X eAI*XeL2)7X+A19%Xel,)
RETURN
END
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SUAROUTINE FRNTUIX Ny APLA,WHERE)D

c

C THIS SURROUTINE FRINTS OUT ARRAY=-X OF LENGYK Ko THKE FCRMAT IS.sese

C ,

[ NPLLCT.O F=FORMAT, ANFL CECIKAL FLACES

C NPLGLTSC E-FORMAY,~NFL CECIMAL FLACES -
[

C IN AGGITICAseesoe

N

C A = HCLLERITH NAMF CF ARRAY BEIMG PRINTYED (€W, RTGHY JUSTIFIECY
c WHERE = KOLLERITH LAREL (20H)

c

CIMENSION X(1) JWKERE12Y
FRINT 100 sA o NoWHEFEJA, (A Ky K=1,9)
Ti=1
T2=MING(N,10¥
10 NF-IARSHINFLY
IFINFL.GT43) PFINT 101,11 AP tXC(I) 111,12
TFAINFLoLTOY PRINT 102,171 NP(X(TI),I=11,T29
I1-T1+10
IZ2=MINCII1+4G,N) |
IF(It.LEesNY GO TC 10

FETURN
100 FORMATIL///7/713H PRINTCGUT OF L A6,BE(K) 4K=1,TULo YZAL0//
1 SH Ko BXAR o IHCKY 4 GII XABy3HIKe 3 TL,1H) Y/ '

101 FORMATIIS, IX10F12,=)
102 FORMAT (IS, *X10€12.2)
ENC
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SUFRGUTINE SPCTRMIXR+XToNTANeNOUT JALFRA, WY

IN THIS SURFOUTINE W CCMPUTE THE FOWER SFECTRUM OF THE COKFLEX TIVE
SCQUENCE IN THE ARRAY=FAIR (XR,XI? CF LENGTH NIN. THE PCWER SFECYFLY
IS RETURNEC IN ARRAY xf, ANC IV IS NOW OF LENGTH NOUT,

THE SAMPLE SPACING OF THE FOWER SPECTRLM IS 1/NOLT OF THF REFETVITICA
FOEGUENCY,

A COSINE-OMN-A~FEGESTAL WEIGHTING IS APFLIED TO YHE IKFUT SANELFES,
ALFHA 1S THE PATIO OF THE REIGHTING FUNCTICN AT THZ ECGF TC TKE
CENTER, ALFHA=,08 FOR HAMMING AND ALFHA=1,0 FCR UNIFCRX WEICHFTING,
THE USER CAN SUFFLY HIS CWN WEIGKTINC FUNCTION TN ARRAY W CF LENCYH
NIN, RUT HF MUST SFT ALPHA TO A NEGATIVE VALUE,

AFRAY W IS A WCRKING ARRAY ANC T7 MUST BE DIMEASIONET AS LARCE ASecees

THE

19

12

15

40

100

1

NIN IF NOUT.EGeZ**INYEGEF
NIN+2*NOUT IF NOUT.NE.Z**INTEGEP

WETARHTS ARE NOFMALIZED SO THAY THE SUM IS LNTTY,

CIMENSTCON XRUL1Y,XTI(1).h(1)

DATA NTND/O0/,NCUTCZ0/

TEFININLEQ.NTNOLANDNGUTLEC.NCUTO) GO TC 10

IFVYALFFALGE 4049 CALL WEIGHTUIW,NIN,ALFKA)

NIND=NTN

HGLTO=NGUT

N=NOUT=NIN

TFIN) 40,158,412

CALL XMITE~NyGoyXRININ+1))

CALL XMITU(-N,JesXTININ+1)?

CALL FRODIAIN, Wy XK XRY

CALL FRODCNIN, hyXT,XIY

CALL FFT2ZURRXTJNCLT,,~-1)

CALL PCHRINOUT(XR ¢XT 4 XRY

RETUPN

FEINT 169,NIN,NCUT

stop

FORMATU/1XLGH®** EFRGR IN SFECTENM, ANOUT IS SMALLEF THAN NIN ®swy
/INXLHNIN-TA,1DXSHNOUT = T6RY

ENC
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SUEROUTINE WEIGHT thy N, ALFHAY

THIS SUBROUTINE GOMPUTES COSINE=-GON-A-PEDESTAL WFIGKYS IN ARRAY W Cf
LENGTH N (» IS ALSO THKE NUMBFR OF FULSESY, ALTHA IS THE RATIC OF THE
WEIGHTING FUNCTICM AT THE EOGE TG THE CENTER, ALPHA=,08 FCR FAMMING
AND 1.0 FOR UNIFORFM WEIGHTING, THE WEIGHTS ARE NORFALIZED SC THE SUV
IS UNITY,

IF THE WETGHTS ARE TC RE USED AS PART CF A LONGFR ARRAY OF LENGTH N&
CHITHh ZERO FILLYs THE CALLING SEGUENCI YSessse

C‘LL XH!T(-NR.O..H‘
CALL WEIGHTS (W, N,ALPHAY

TO CENTEXR TFE REIGHKTS AT THE FIRST SAMFLE CF THE W-ARRBY (EBEST DONE , :
WHEN N IS GGOYs FGLLOW THE AACVE SEGUENCE WITH,.. 40

CALL SHAFTIH,NR,=N/2)

OIFENSIGN wi1)
DATA TWOFI/6.2E31853/ '
A=(1,+ALFHAD /2, !
A=(1.-ALPHA) /2,
CN=INe1) /2,
AN=N
06 20 X=1,N
W{K)=A+B*COSITHGFI?(K=CN} /XNY

20 C(GNYINUE . 3
WNORM=1,/77SUNMTA,H)
CALL FRCOU=-NHACRN W, HY
KETUFN
END




T

FUNCTTGN CEX (AN -
COMPUTES DECIREL VALUES. THERE APE TMC ENTRIESesses

c

(o .

c D=DFCAY T D=8 e*ALOGL0 (Y

¢ v ‘

c CALL DONtA,NY CACKYECBIAIKIY, K=1,N

C

C THE GUTPUY IS TRUNCATED TO THE INTERVAL -¢S, 499 p@®,
¢

DIMFASTON At1Y

NEZ(7)=10.%ALOG1D (AMAXL CANINLI (7, S43EGS42)414258SE~10)Y

ENTRY 0OA

Cax=NR7(A LIV

FETURN

ENTRY CEN

G0 20 I1=1.\

AtTI)=DEZ(ALIN
20 CONTINUF

FETURN

END
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SURRCUTINE BSTGEN(A,A,NN)

COMPUTES CUMULATIVE DISTRIEUTICN FUNCTION
TO INITIALIZEeense

CALL DSTIN tX14XINC,N? X1
XINC
FOR EACH CATA POINTeases

CALL DSTPNTIX,W) X
W

CF SAMFLE CATA

FIRSY VALLE
VALUE INCREMENT
MIMRER GF INCFZKENTS

DATA PCINT VALUE
WETGHT (LSUALLY =1,)

TO CGMFUTE THE GISTRIALYIOM FUF °“ION C(AFTER LAST CALL TG CSTFNY) eeee

CALL GSTFUNPY 2

= ODISTRIEUTICN FUNCTION

THE CISTRIFRUTIGN FUNCTICN IK ARRAY F If,0000

Fl1) = FRCBIDATA.LY X 1)
PL2) = FECANATALLY JX1+XTNCH

L]
FIN) = FRCER(DATA.LYX1¢(N=L1)*XIMY
ARRAY F IS TIMENSICNED FOR A MAX VALUE OF

OIFENSTION A1) ,FL2D2)
ENTRY [CSTTNL
N=NN
IFINGTL 201 STGF 22
NS=0
NP1 =N+t
X1=A (1)
YINC=-F
CALL XMIT{-NF1,0,,F)
RETURN
ENTRY CSTFUN
e 10 1=2,KNP14
FUY-FL=1)+F LY
10 COPATINUE
NG 20 L=1,N
ALY =P (NFL Y =F (LY
ACL)=1,=FIL)Y/FLOATINSY
23 CCNTTNUE
FPINT 100,F INP1Y
100 FORMATIELG.6)

N=201




RETUPN

ENYRY OSTPNY
NS=NSe1
L=tAt1)=X1)/XINC+ 2,
L=MAXO(L1)
L=MIND (L, NFL)
FILY=F(LY+F

RETURN

FNC

93
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[ SUBRCUTINE FFT21ARSAI,KyISEN)
}

t

‘ C THIS SUBROUTINE COMPUTES THE FFT IN THE ARRAY=PATR (AR(AIY CF LENGTH N

j C AND RETURNS THE RESULT IN THE SAME ARRAY FPAIR,

| c
c 1SGN = SIGN GF FHASE ARGUMENT IM FFY -
r 3
C ARRAY W IN CGMMON MUST BE GIMENSTONEC AT LEAST AS LAKGE AS 72N IF 1
C NoNEo2%* INTEGER,
c

DIMENSION AR(19,AT (1} ]
COMMON /TEMP/ W1}

1=1

IFCISGR.GTL0) 1=0

CALL FCURT ARG AT RNyol,To1oH (29, NIN+1DY

RETURN i

ENC
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SUBRCUTINE FGURTUIDATAR DATAILNNJNGIM IFRUN,TCPLX ¢WCRKR ,KCRK])
CIMENSICN CATARC1),CATAT(1) 4NNESY NORKR(1) ,HOPKI(L),IFACTL20)

THE COOLEY=-TUKEY FAST FOURIER TRANSFCRY IN USASY RASIC FCRYRAN

EVALUATES CGPPLEX FOURIER SERIES FCR LCHPLEX CF REAL FUMCTIONS,
THAT IS, TT COFPUTES
FIRANGJL0JZ2400e?=SUNICATALIL3T24000) *H103111-19%01J1-1)

' N2981T2-1090J2-1)%,4000
MHERE WISEXPI-ZOFISSCRI(=-1)1/NNIL)), N2=EXP(=2°FI?SCRTC-11/ANI2)Y,
ETC. AND I1 AND J1 RUN FROM 1 TO KN(1), I2 AND J2 RUN FRCV %1 TO
NNt2Vy FTCe THERE IS AC LIMIT OM THE GCIMENSIOMLITY (NUV2ER OF
SUBSCRIFTS) OF THE ARRAY GF GATA, THE FROGRAY WILL FERFCRY
A THREE~DIMENSIONAL FOURIER TRANSFCRYI AS EASILY AS A ONE~GCIMEN-
SIONAL ONE, THC IN A FROFCRTIONATELY GREATER TIME. AN IMVERSE
TRANSFORM CAN BE PIRFORMED, IN WFICH THE SIGH IN TFE EXFONENTIALS
IS &, INSTEAL CF =, IF AN INVERSE TRANSFORM IS FERFORVEL LFCN
AN APFRAY OF TRANSFCRMEC DATA, THE CRICINAL OATA WILL FEAFFEAS,
MULTIFLIFD BY ANCGLIPNNTIZY?, s THE ARGAY OF TNFUT TATA PAY BE
CEAL GF COPFLEX, AY THE FFCGRAMMERS CFTION, NITH A SAVINCG CF
ABOUT THIFRTY PER CENT IN RUNNING TIME FCR REAL CVEF COFFLE?.
(FOR FASTEST TRANSFCRM GF REAL ODATA, AN(1) SHOULC SE EVEMN.Y
THF TRANSFCRM VALUES ARE ALWAYS CCMPLEX, AND ARE FETURNEC IN Ti*
OFIGINAL ARRAY OF CATA, REPLACTING THE INPUT DATA., THE LENGTH
GF EACH DIPEANSION GF THE GAT/ ARRAY FAY PE ANY TNTEGES, VeE
FROGKAM RUNS FASTER CN COPFOSIWE IPTEGERS THAN CN FRIYES, ANC IS
FARTICULARLY FAST OGN NUNPERS RICK IN FACTORS CF TWC,

TIMING IS IN FACT GIVEN RY THF FCLLGHIAG T PPULA, LEY NICY ®F THE
TOTAL ANUMSER OF FCINTS (RTAL OR COMPLEX) IN THE CATA ARRAY, THAY
IS, NTCT=NNCLIV*NNE2)%,,, CECOMPCSE NTCT INTC I¥S FRIME FACTORS,
SUCH AT 289KZ ® 39¢K3I & 53sK5 » ,,, LET SUM2 FE TFE SUK CF ALL
THF FACTORS OF TWC IN NTOT, THAT IS, SUM2 = 2°2. LEY SL¥F BE

THF SUM DF ALL OTHER FACTGRS OF ATCT, THAY IS, SUVF = 3I¥%x34¢5%K5+,,
THE TIME TAKEN AY B PULTIGIMEKSICAAL TRANSFORY GN IHESE MICTY CATS
IS T = TO « TLI*NTOT o T2°ATOToSUMZ ¢ TRONTOTPSUMF, FOR THE PAF-
TICULAF IMFLEMENTATIGN FORTRAN 32 CN THE CLC 7200 ¢FLGAYING PCINY
AQQ TIME = SIX MICROSECONCEY,

T - 3000 ¢ 6ODD*NYCTY + SO®ANTOT*SUMZ & 17S*NINTPSUKF MICRGSECONDS

ON COMFLEX DATA,

TMFLEMENTATION GF THE CEFINIYION ®Y SUMMATION WILL RUN IN A TIME
PRCFORTIONAL TC NYCT®2, FOR HIGHLY CCNFCGSITE NVCT, THE SAVIKGS
CFFECEC BY CCCLEY-TUKFY CAN 8F NRATATIC, A MATRIX 100 EY 100 WTLL
RE TFANSFORPED IN TIRE PRCFORTIOML TC 10000%(2424Z24245454545) =
ZR0.0GC (ASSUMING T2 ANG T3 TQ AE ROUGHLY CC¥FARAFLEY VERSLS
1CC0L*%2 = 1004,JU0,00C FOR THF STRAIGHTFORWAFN TECHNIGUE.

THT GCCOLEY-TUKEY ALGCRITH® PLACES THWC FESTRICTICAS UFCN THE
NATUFT OF THF DATA BEYOND THE USUAL RESTRICTION THAY

gi100
101
G102
G103
010%
G105
0106
0107
010n
9499
0110
G118
0112
0113
114
0115
€116
o117
0118
0119
5120
9121
0122
123
0124
cs2s
0126
0127
0128
cg129
0130
€134
9132
0133
0134
135
0136
9137
n13e
5139
0140
1t
0142
9143
pAR T
2148
3146
0147
c148
7349
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THE DATA FROM GNE CYCLE OF A PFRJIOCIGC FUNCTICN, THEY ARE~--

1, THE KUMBER OF INFUT DATA AND THE NUMBER CF TRANSFORF VALUES
MUSY BE THE SAPE.

2. C(ONSIDERING THE DATA TO BF IN THE TIME DOMAIN,

VYHEY MUST QAE EGUI-SPACEC AY INTERVALS CF DT, FURTFER, THE TRANS-
FORM VALUES, CONSICEREC TC BE IN FREOUENCY SFACE, WILL Bf £OUI-
SPACID FROF G TO 2°PI®INNIIY=11/(ANCIV*0CTY AT INTERVALS CF

2%F I/ INNLIVYOOTY FCR EACH CIMENSICA OF LENGTH KNN(I), OF CCURSE,
DY NtET NOT HE VTHE SAWE FCR EVERY GIFENSION,

THE CALLING SEGUENCE IS--
CALL FCURTI(GATARsDATATNNoNDIM,IFRWD 4 ICPLX s WORKR 4WGCRKI)

DATA< ANC CATAT APL THE ARRAYS USET TC HOLC THE REAL ANC ! ®AGINARY
FARTY S OF THE INPUT CATA ON INPUT AND THE TRAMSFORM VALUES CON
OUTPULT, THEY ARE FLCATING PGINY ARQAYS, MULIICIFEKRSICAMAL WITH
IDENTICAL CIMENSICMALITY AND EXTENT. THE EXTENY GF EACH G IMTNSICA
IS GIVEN IK THL INTEGER ARRKAY NN, CF LENGTH MCTI®, THAT IS,

NDIM IS THE NIMENSTONALITY OF THE ARFAYS DATAR ANG DATAI,

IFPND TS AN INTEGER USEG TC INTTCATE THE DIFECYICN OF THE FOURIER
TRANSFCRM, IT IS NGAN=-7ERC YC INCICATF A FCRWARD TRANSFCRY¥
(EXPONENYIAL SIGN 1S ~) ANO 7ERO TC INGICATE AN INVERSE TRANSFGRM
(SIGh 1S #), ICFLX IS AN INTEGFR TO INCICATE WHETHER THE CATA

ARE ©FalL OR COMPLEX, IT IS NON-75R0 FCR CCMFLEX, ?ERO FCF REAL,
IF 17 IS ?2FRO (REALY THE CONTENTS CF ARRAY DATAT WYLL EE ASSUMEC
T0 BC 7ERO, AND NEED NGT BE EXFLICITLY SET TC 7ERG. AS EXFLAINEC
AEGVE, THE TRANSFCRM FESULTYS ARE ALWAYS COFPPLEX ANL ARE SYCRED

IN DATAF AKG DATAI CN RETUFN, WCRK® ANC WCPXI ARE ARFAYS USEC

FOR WORKING <TCRAGE., THEY ARE NCY NFCESSARY IF ALL THE CYYEASICAS
OF VHE DATA AKE POWERS OF TWO., INK THIS CASE, THEE ARRAYS “AY BE
REPLACLE Ay THE NUMBER O IN THE CALLING SECUENCE. THUS, LSE CF
POWERS €F TWC CAM FREE A GCOGC GEAL GF STCRAGE., IF ANY CIMENSIOM
IS NOT A POWER OF TWO, THESE ARRAYS MUST RE WFFLIEOD. TH Y ARE
FLCATING FCIANT, ONE GIMENSIONAL CF LENGTH EQUAL TC YHE LENCFST
ARFAY FIMENSION, THAT IS, 10 THE LARGEST VALUE GF ANCI),

WOFKR AND WCKK1, IF SUFPLTED, MUST NCT 8E THE SAME ARFAYS 8S CATAR
OR DATAT. ALL SURSCRIFTS OF ALL AKRAYS REGIN AT 1.

EXAMPLE 1, THFEE~GIMENSTCMAL FORWAREC FGURIER TRANSFORY (5 A
COVPLEY ARRAY CTIMINSTUNED 100 EY 1€ RY 13,

NIMENSTON TATARE100,16,13),NATAT (100,416,137 ,WOSKRT100),KC* k11100
GIFEASTION KAN(3)

NHIT1) 100

WNEZ) 16

NNETY =12

CALL FOURTUMATAR IATAT ¢NNy3,2,14hGEKF4KCRKTY

EXAMELL 24 ONE-DIMFNCSIONAL FOFRHART TRANSFGRM CF A REAL ERRAY OF
LENE TH Fl,
FIMERSTON TATAKIARLY ST ATAT (AL

€150
01514
€152
0153
156
0155
71¢6
Cic7
C1%8
0159
0160
0161
C1€2
01€3
%1€6
01€5
0166
0167
01¢€8
01€9
g17¢
0T
0172
3173
1176
cL75
G176
6177
g17e
0179
¢180
c181
0g82
01€3
f186
ni18s
0186
0187
Jis8s
£18%
7190
t161
0152
7153
01¢t
79165
7166
31¢7
01s8
51¢9




c
r
C
c
C
C
C
C
C
C
c
c
C
C
¢
c
C
r
C
C
¢
C

[y

n

D00

19

11
12

Lo i L e e i M

CALL FCURTI(OATAR,OATAI y64s14140,0,+9Y 0200
6201
THRERE ARE NO FRROP MESSAGES OF EFK(R KALTS IN THIS PROGRAY. THE 2202
FROGRAF RETURNS TFMECIATELY IF NOIP CR ANY NNUID IS LESS THEAN ONE. G203
9206
THE SINE ANO COSINE VALUES REQUIKET FCR THE TRANSFGRM ARE n20%
GENERATEG RECURSIVELY. IF OOUGLE FRECISION TS AVAILAELE, 1V IS t206
STRONGLY URGEDC THAT THE FOLLOWING VARIABLES RE SC BECLAREC TO 6207
REGUCF ACCUPULATICN GF ROUNDOFF ERROR==- c208
GOUALE FRECISIGN THOPI, THE TAWSTFRyNSTFIMFIPF WHINI HR KT WTEMP 6209
® L THETM HWVSTRWMSTI o THONR SRy ST CLASRyCLOST 4STHFE,STRFT 0210
IN ADDITION, TWOFI SHOULD EE ASSIGMFC A SUFFICIENTYLY PRECISE 0211
VALUE AND THE VARICUS CALLS TG Y+E FUANCTIOANS CCS AND SIN 0212
SHOULD BE CHANGED TO DCOS AND NSIN, 06213
G214

FRCGRAY RY NCRMAN ERENMER FROF THE BASIC ALGORITHY RY (KERLES g215 !
RADER (BOTH OF MIT LINCOLN LARORATCRYY, MAY 1967, THE ICEA 5216
FOR THE BIY SFEVERSAL WAS SUGGESTEC RAY RALFF ALTER €ALSC *IT LLY, 0217
ANA®TEC FRCM ThE WORK GF JAMES W, COGLEY AND JCHKN %, TUKEY, c218
AN ALGGFITHM FCP THE MACHINE CALCULATION OF COMPLEX FOURIEFR G219
SERIES, MATH., COMPUT. 19, 90 (ARRIL 1S65%, 2€7-301, c220
221
IFINTCTF-1)0CZ2041,1 222
NTOT =1 022%
GG 2 TOGIM=1,NDIM 0224
NTOT=NTGT*AN(ITIM) r22s
THOPI-h,2831R5307 0226
_ 9227
CAIN LCCF FGR FACK GIVEANSICN c2e8
n229
NF1=2 3230
0 919 INIP=1,NDIV 0231
N=NNLITIMY 3232
NE2=NELON 7233
IF(N~-11620,900,5 0236
0235
IS N A FOWER CF TWC ANC IF NOY, WHIT ARE ITS FACTICRS 0236
nz23v
®=N 2238
NTHO:=NF1Q 0239
T1F=1 0240
IDTV-2 0241
IouerT-M/Inly n2a2
TREM-¥-IDTVeTICLOTY 0243
IFLICNLY=-TEIVIS0, 11,11 t244
ICCIFFVY20,17,420 n24s
MTRC-NTHC4N TWO n246
IFACTIIFY =101V 0247
IF=TFeq 0248
rF=TOUCT €249

i

1

- e »




20

31
32

n Al &~
- (=] =)

~N D
oo

AN MANDAN

71

7y

60 TC
I0IV=3
INCN2:
16U0T=
IREN=M

9%

it

1F
v/IDIV
-JOIV*IQUOT

IFCICUOT=-T0TIVIG0,.31,31

IF(IRE
IFACTL
IF=IFe
M=T0OUO
GO0 YC

10Iv=1I
G0 YO

INCN?=
IFLIFE
NTWHO=N
G0 70O

IFACT!
NONZF =

STPARA

¥I604+32,40
IFy=1D1V

1

Y

30

CIve2

MY

IF
M¥604+514F0
TRO+NTHKG
70

1FY =¥
NP2/NTHO

TE FCU% CASES=--~

1. COMPLEX TRANSFOPM

e

e

e

TCASE=
ML
IF1ICE
ICAST -
TFeIrT
TCASE=
TFINTH
Icecr =
ITMIN-
NTHRO- N
N-k72
NPT NY
NTOT =N
1=1

o ag
rATAF L
OATATS

FEAL TRANSFCRM FGR THE 2ND, IXRC, ETCe (IMENSION. FETHGT=--
TRANSFCRF HALF THE CATA, SUPFLYING THE GCTHEF HALF EY CCN=-
JUGATE SYMMETRY,

FTAL TRANSFCFM FCR THE 1S, CIMENSICN, N CGC. HETHCT ==

SEYT THE IMAGINARY PARTS 10 7ERC,

CEAL TRANSFGRYM FOR THE 1ST OIMENSION, N EVEN, WETHCT--
TRANSFOPM A COMPLEX ARRAY CF LENGTH N/Z WHGSE REAL FARTS
ARE THE EVEN NUMBEREC RFAL VALUES AND WHGSE IMAGINERY FAFTS
£FE THE ODD-NUMREREL REAL VALUES. UNSCRAMPLE ANC SUFPLY
THE SECOND HALF EY CONJUGAT- SYMMETPY,

1

1
LxX1100.,71,100
H
F=11724,7241C0
3
(-NF1)10C,100477
L

¢

THO/2

1

16177
JT1sNT0T

JE-DATARAI)
JYTDATARTTI 1)

02¢0
o2¢t
nee?
0253
02chL
n25%
J22¢6
p2¢7
92¢8
0259
C2€0
261
g2e62
c263
02€4
026s
02€6
02¢€7
02€8
D2€9
5270
0271
0272
c2r2
27T
c271s
C276
a2t
c278
0279
G280
0281
0282
6283
0284
1285
c2ee
0287
0288
0289
5260
n2ey
0292
r?2¢xy
52S%
02gs
6266
02%7
a2¢ch
22¢9




121

125
13¢
140
1461

153

NYOD

21¢

220
24C

250

260

99

1=T+2

SHUFFLF DATA BY BIT REVEKSAL, SIME N=29%, AS TKE SKUFFLING
CAN BE OGNE FY SI®ELE INTERCHANGE, NG WCRKING ARRAY IS NEEDED

IF (NON2F-191061,101,200
NF2HF=NF272

J=1

DG 150 12=1,AP2,NF
JIFLU-129121,130,130
JIMAX-T2e¢NFL1=-1

GC 125 Ti1=12,11MAX
0o 125 I3=11,NTOT NP2
J=Je13-12
TEMI'FR=CATARC(IS)
TEMPY=CATATLIZ)
GATARUIZV=CATARCIYY
CATAICI3V=CATAICJ2Y
DATARIJ3I=TEMPR
DATAT I3V =TEFPY
M=NP 2 WF
TF(J=%1150,150,4101
J=J=V¥

M=M/2
IF(M=NC191650,140,140
J=Js¥

GO TC 340

SHUFFLE OATA BY DIGIT REVERSAL FCR GEMNERAL N

DO 270 I1=1,NP}

06 270 IX=T1,NTOT,NP2
J=13

GG 260 I-1,N
IFITCAE-3Y210,220,21C
WORKR{II=0ATARTI)
WORKI(IN=CATAT D)

-0 TC 240

WORKER(I) -DATAR'TIY
AOPKI(TV=0,

TFE2=NF2

IF=IFFMTA
[FF1=1FF2/71FACTUIF)
JJrIFTe
JF(I=1=TFEC)ZR0,255,255
J=J=1FF2

[FH2-THFL

(F=1F+1
[FLTEI2=-NP1Y26047RD,c50
LONT INVIE

0300
€301
€302
0303
0304
0395
0306
0307
G300
€309
0310
311
3312
06313
G314
G315
0316
0317
€318
0319
8320
6321
2322
n323
5324
0325
r326
2327
0328
0329
0320
0331
3332
6332
334
n33s
€336
(337
f338
£330
g3e0
341
032
2362
hALTY
3345
Giub
I347
0sun
0149

- m ——— o




100
3
l 12VAX=I3¢NF2=NF1 0350
E I=1 3%
i 00 270 I2=13,17MAX,NP1 £3c?
[ DATARCIZ)=WCRKALTY o3ey
l DATAI(I2)=WCRKITI) 03¢y
; 270 I=1s1 r£3cs
; c 03ts
C SFECIAL CASE-- W=1 c3ce7
c 03¢8
30¢C 11PNG=AF1 n3cy
, GO TO(202?,%01,302,362),ICASE £260
301 T1FENG=NFO® {1 +NFREV/2) £3€1
302  IF(NTHC=-NP1)E0(+600,302 £362
303 0O &30 I1=1,I1FNG G363
IVIN=NPL+T1 03€4
ISTEF=2*NPY 03¢5
G TO 13C 03€6
210 J=11 03e?
£0 320 I=TFIN,NTOT,ISTEF 03¢€8
TSHMPR=GATARCT) £369
TEMPI=TATAILD) 370
FATARCII=GATART S -TENMPF 0371 1
TATAT(TII=NATAT(IV-TEMFI g372
TATAF(I)-DATAR(IY +TEMPR N7
DATATEDI=DATAT LIV 4TENP] G374
320 J=J4 ISTEP 0375
TMIN=TMIN® IMIN-T L n376
ISTEF-ISTEFAISIEF 3377
3t TFCISTEF=NTHRO) X10,31C,331 c378
c 9370
c SFECIAL CASE-- W==SGRTI-19 <380
¢ 5381 F
3y IMIN-3*NPL+T1 £8?2 ;
TSTEE-4ONPL r382 i
60 V6 42D N384 ?
N IH JTIMIN=1STER/2 c385
PO 410 T=IMIN NTCT,ISTEF €386
TFOIREMONIG 1,407,401 n3is?
Lo; TEHPE-TATATAT) 03es
TEMPT-~GATARTID 0389
6C TC 403 0350
[ Id TIMPE - -CATAI(TY 9391
TEHPI-TATARC]) 1162
402 NATARCIN=T ATAP (J)=TE}MFR 0353
NATATITYI=CATATTJY=TEPE] 1354
TATAF (D ~GATARC Y ¢ TEMKS 7368
CATAY(SI-NATATUSY ¢ TEHP]Y n3¢e
410 J=JHISTEFR 93%7 :
IMIN - IFINSTMIN-TY 168
TSTES ~ISTFF ¢ISTEF 23¢9 i
1

. S




“2C
L6

c1C

6290

626

€33

IFCISTEF-NTROVL00 400,430
CONYINVE

FAIN LOOF FOR FACTGRS OF TWO,.

THETA:~THGE1/8.

WSTPR=0,

NSYFI="1-

ITOYFFRD1S502 501,502
THETA==THETA

wSTHI=1.

MMAXTAYNFL

GO TO 540
HWMINR=COSITHETAY
WMINI=SINUTHETA)
WR-WMINE

wWI-WMINT

MMIN-VFAX/24NFL
MSTEF=NFL¢NFY

A0 520 M=MMTIA,MMAX,MSTEP
rC 5¢¢ T1=1,11RNG
ISYEFR=FMAX

THMIN-V4TY

JIMIN-1ISTEF /2

N SZ¢ I-IMINNTGTLISTEF
TEMPF=CATAR(I)*HR-CATAITUIV*W]
TEMPT=CATAR(IV*WI+NATATL]) *WR
fATAT (IV=CATARCJ) -TEFFR
CATAICII=0AYAYI (ST -TFIET
GAYAF (JV¥=DATARU IV 4 TENFF
CATAT(I)=CATAI MUY+ TEMET
J=J+ISTEFP
IMIN-IFINGTINRIN-TY
ISTES=TSTEF+ISTEF
IFCISTEF-NTHGY®I0,520,525
CCNTINUE

WTIEMF - nR*WSTE]
WR-HF*hCTPRoRTYWSIFT
WI-HWITWeTEl 4nTENME

WSTPE -WMINF

WSTP T-WHMINT
THETL-TKUETAYZZ,
MMAX:MVAY S MMAY
TF(MMAX-NTHGDIS00,500,600

101

W=EXP (=29PI2SNRTU=1)%M/VFNAXY

MATh LGOF F(R FACTCRS NOT FOUAL TO THO,.
WL XF (2P T*SNRT (=12 (J2~T3) /TFFZY

IFINGNZF=11700,700G4601
IFF1-NTHO

"uge
Cadl
0402
0603
LY
Ju0%
0406
Y} 4
cuds
0409
tu10
cuit
d612
0413
ce1t
(415
su1k
G417
Lh18
619
tezo
5421
2422
T2
Quzlh
°nz5
tu2h
427
Cuzs
rezg
2630
S
Tet?
Cu13
0634
ny3s
0636
Cu3?
T438
f439
Y]
Cyd4l
Chuz
THLz
24y
1445
1446
fLa?
Suu8
449




614

A1
f1e

102

IF-INCAN2
IFF2-TFACT(IF)®IFFL
THETVA--THOF I/FLCATLIFACTEIFY)
IFULIFEWEYAL12 .61 4,612
THETA=-THETA
THETVM-THETA/FLCATCIFFI /NF 1Y
WSTOE-COSITHITAY
WSTFI=SINUTHETAY
WMSTR=FGS{IHETM)
WMSTI=STNITHITMY

WMINF-1,

HWHHEINT=C.

D0 66C Ji=1,1FFL1,NF]
T1MAY - J14T1RNG-1

60 659 Ti=Jd1,T1MAX

CC 650 T3=TI1,NTICY NP2

T-1

WR-WHINF

WI=WPIKT
JPHMAYZ134]IFED-TFF

N0 6u) S2=13,12MAXIFFY
THCWF - WEaWK

JMINET R

JAIMAI U eNF2=-TFF?

B0 AL JI-U2,JTMAXLIFF?
JrIMINGIFED-TFFY
SR=GATAF(J)

SI-DATRATLN

OLTSF=0,

OLCST- 0,

J=J=-TFF1

STMPR=CF

STHRT -]
SE-THWORF*CR=-CLLSRATATAR ()
SI-THOWF®*ST=-CLCST+CATAT LN
OLGSF=STMFE

GL{STI-TreY

J=J=1F1

TFUJ=JFTNYOP 146214620
WOEKE LT - WEPSE-NI* T-0LNSE+NATAR ()
WOCKILTY-RI®SRANE*"T-GLOSTIANATAT L)
JMIN-JYINGTFFD

T=T+1

WTEMF - wisWSTF]T

Wh WE PRSI -WToRWeTrTY
hT-WI"LSTRRERTEMP

T-1

O K00 S0 T13,J2MAY,IFFY
JAIMAY P eNF =-TEF

GO0 6HFC Y U2 JJTMAY L TEFQ

q4L50
06t1
0652
J653
LR
06 ES
0656
CLS?
Thtn
t6L59
Ju60
fehl
{u62
CLE3
0464
CheES
Quee
CLET
cues
TLEg
Cu70
TL71
cur2
TL?73
0674
Jb75
tL7e
fu?7
%4 ]
cu?9
CL%9
gu®y
gun2
6483
LB
0«85
fug6
rLe?
CL88
C4ES
nuso
fuGy
L2
0L,GX
faGh
ThES
TLEE
2ng?
CLaR
{6.G9




-~

650

q60

NNTIHYON

[ ]

702
703

710

720

7o
730
731
rve

749

CATARCJII=WORKFTIY
OATAT (J3I=KCRKIIY
1=74+1

WYEMP=KVMINFORKESETT

WMINF=WFINR®WMSTP-NMINI®WIST]

WMINI=WMINI PHMSTRONTEMF
IF=1F+1

IFFL1=1FF2
IF(IFF1-NP2)Y610,700,700

CCMPLETE A REAL TFANSFGRM IN THE 1SY CIMENSICN,

JUGATE SYMPETRIES.

60 TC (5)0,800,900.7017, ICASF

NHALF=N

N=NeN

THETA==-TROFI/FLOATIN)
IFUTFRWEOYT73,702,703
THETA==THETA
WETFE=(GSETHETA)Y
HSTPI-STIN(THETAY

WE=WSTFF

HI?“SYFY

IMIN-2

JMIN=NKALF

fG 1C 725

JUMIN

10 720 T=IMINNTOT,NF?
SUMP= (TATARCIV4DATARIYIVY/?,
SUMI=(CATAI(I) ¢DATAT (YI}/2,
CIFR=(FATAGL{IV-DATARLYIY/ 2,
CIFI-(CATAT(I)-GATAT LU /2,
TEMPR=WK*SUPIsWI*CIFK
TEMPY-wI*SUMI-WR?CIFE
GATAF (1Y =SUPR+ TENFC
FATATCIY=0IFI+TEPFI
FATAR € JV=SUMR=TEMFF
OATATCUV-~-CIFITENMF]
JTJIENF2

TMIN=THINGY

JMINZJFIN-

WICMP-WR*WETPT
WE=WR*WSTFEF-RI®WSTF]
HI-WI®WSTERORTENF
TFUIMIP=UMINIZ 10,730,700
IFCIFRRCY 731,740,721

GO 735 I<IPINANTQOT,NF2
NATAICII=-~CATATCTY
NE2 =K 7eNP2

NIGT=NTCTHNTIGY

103

N EVEN, FY CON~-

€500
0501
502
€503
1506
GSgs
9526
£507
Gsos
0509
0510
0511
0512
€513
0S14
0515
0516
G517
0518
9519
t520
ts21
0522
£523
0524
0525
€526
8527
1628
0529
530
[ 3§
0532
6533
0536
0536
0536
0537
6538
re39
0540
€541
CF W2
543
0F L
0545
0546
eruz
CSus
L]

. e —————— -




104
J=NTOTet gs€p0
ITMAX=NICY/Z¢} 0551
745 ININ-TMAX =NHALF nge2
I=INTN -1+
GO 70 755 05t
750 DATARCJ)=DATARYIY $o¢S .
DATAICJI==CATAYICYY 0556
7565 I=T1e1 recy
J=J=1 (A1
JF(T-1MAXYT?5(,760,760 gce89 1
765 DAVARCJ)=DATARCIFINI ~DATATUIINTNY 0°60
NATATIEJ)=0, 0 61
IF(I-J)770,7€E0,780 2re2
765 DATAR(JY=0ATARTI) cce3
CATATUU)=DATAITIY 0% €6l
rro I=1-1 [LY 3
J=Jd=1 £5€6 .
IF(T=-IVINI 775,775,765 0567 1
775 NATARC ) =DATARCIMINY +DATAICTININY 85¢€8
CATATtUY=0. 05649
INAX=IMIN G570 |
60 TC 745 gs711
7RO DATART1)=NATARC1Y 4CATATI (1) 572
LATATU1Y-0, 0573
GG 1C <uo 0576
r gs s
C COMPLE TS A RCAL TRANSFORM FOF THE iND, 3RDy ETC. CIMEANSICA AY 576
C FONJUGATE SYMMETRIES. 0577
c LIN] ]
pOC IFINFRFV=2YSul,900,4,8D5 5570
RO GO ARD T3-1,NTOT,NF2 0S80
I2MAX=T3+NF2=NF1 5681
DG B8+0 12-13.,1°MAX,NF1 csa2
TMAX-T2e¢NPE =1 CSE3
IMIN=124115NG 05 AL
JMAX=T34T TeNPL=-TM]IN C585
IC(T2-T3VR20,82),R10 0536
&10 JMEXT JMAXNF 2 c587
hel!] TFUINTR=2V854,850,520 0588
&3n JOMAY S NTO r589
LO BRul T=TFIMN,IMAX €560
GLATAK (1V=DATAR (I 561
CATAT(1)==TATATTI) 8552
aur NERES £562
5N RERLY $ . 35¢4
NGO RAD I-ININ,IMAX,NFQ aGeR
DATEAREI) -DATARCDY £596
CATAL(T)-=TATAITY) a5¢7
£hi J-J=-NFE 1568




e

agc

a10
920

ENDN CF LGOF ON EACH GIMENSION

NEGTNFL
NPI=NF2
hFREVY=N
PETURN
ENC

105

0600
€601
0602
GEOD3
thit
9605
0606










